Search

found 191 results

Images, UC QuakeStudies

Members of the public walking up Colombo Street in the aftermath of the 22 February earthquake. Behind them emergency personnel are using a crane to check the floors of the Forsyth Barr building for trapped people.

Images, eqnz.chch.2010

Hotel Grand Chancellor on verge of collapse but still standing after the 6.3 magnitude quake hit Christchurch on 22 February 2011 because of concrete being poured into the lower floors.

Images, UC QuakeStudies

A team of Fire Service and Search and Rescue personnel using a crane to check the Forsyth Barr building for people trapped by the 22 February 2011 earthquake. A sign reading, "Help" has been stuck to a window in the floor below.

Images, UC QuakeStudies

Damage to a house in Richmond. The foundation is all that remains of one room, and the exposed interior wall has been covered with builders' paper for protection. The photographer comments, "Revisiting our abandoned house. Back door and the floor of the sunroom".

Images, UC QuakeStudies

Emergency personnel helping an injured man who was trapped in the collapsed Pyne Gould Corporation building. He can be seen descending down the shaft of a crane. This photograph shows how the building's different floors have "pancaked", collapsing on to each other.

Images, UC QuakeStudies

Members of the USAID Disaster Assistance Response Team (DART) and New Zealand Urban Search and Rescue breaking through the floor of a building which was severely damaged during the 22 February 2011 earthquake.

Images, UC QuakeStudies

Members of the USAID Disaster Assistance Response Team (DART) and New Zealand Urban Search and Rescue breaking through the floor of a building which was severely damaged during the 22 February 2011 earthquake.

Images, UC QuakeStudies

Members of the USAID Disaster Assistance Response Team (DART) and the New Zealand Urban Search and Rescue, breaking through the floor of a building which was severely damaged during the 22 February 2011 earthquake.

Audio, Radio New Zealand

Earthquake bus survivor, Mike Ardagh - Christchurch Hospital, Reporter Erina O'Donohue live from Christchurch, Where to obtain water, Murray McCully thanks international community, Cowles Stadium welfare centre closed, Man escapes from 12th floor of Forsyth Barr building, Aussie medics set up field hospital, Schools need significant rebuilding and Fourteen supermarkets closed in Christchurch.

Images, UC QuakeStudies

Photograph captioned by BeckerFraserPhotos, "The ground floor of the IRD building on the corner of Cashel and Madras Streets, taken through the Madras Street window. The book market inside the building is almost undisturbed while next door, the CTV building collapsed.

Research papers, University of Canterbury Library

Currently there is a worldwide renaissance in timber building design. At the University of Canterbury, new structural systems for commercial multistorey timber buildings have been under development since 2005. These systems incorporate large timber sections connected by high strength post-tensioning tendons, and timber-concrete composite floor systems, and aim to compete with existing structural systems in terms of cost, constructability, operational and seismic performance. The development of post-tensioned timber systems has created a need for improved lateral force design approaches for timber buildings. Current code provisions for seismic design are based on the strength of the structure, and do not adequately account for its deformation. Because timber buildings are often governed by deflection, rather than strength, this can lead to the exceedence of design displacement limitations imposed by New Zealand codes. Therefore, accurate modeling approaches which define both the strength and deformation of post-tensioned timber buildings are required. Furthermore, experimental testing is required to verify the accuracy of these models. This thesis focuses on the development and experimental verification of modeling approaches for the lateral force design of post-tensioned timber frame and wall buildings. The experimentation consisted of uni-direcitonal and bi-directional quasi-static earthquake simulation on a two-thirds scale, two-storey post-tensioned timber frame and wall building with timber-concrete composite floors. The building was subjected to lateral drifts of up to 3% and demonstrated excellent seismic performance, exhibiting little damage. The building was instrumented and analyzed, providing data for the calibration of analytical and numerical models. Analytical and numerical models were developed for frame, wall and floor systems that account for significant deformation components. The models predicted the strength of the structural systems for a given design performance level. The static responses predicted by the models were compared with both experimental data and finite element models to evaluate their accuracy. The frame, wall and floor models were then incorporated into an existing lateral force design procedure known as displacement-based design and used to design several frame and wall structural systems. Predictions of key engineering demand parameters, such as displacement, drift, interstorey shear, interstorey moment and floor accelerations, were compared with the results of dynamic time-history analysis. It was concluded that the numerical and analytical models, presented in this thesis, are a sound basis for determining the lateral response of post-tensioned timber buildings. However, future research is required to further verify and improve these prediction models.