
A photograph of a bridge being placed across the Avon River outside the UCSA building in 2015. A number of students will walk across the bridge as part of the annual Civil Engineering Bridge Challenge.
A photograph of eight students standing in the Avon River outside the UCSA building, having just fallen through a bridge they had constructed. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
A photograph of eight students standing in the Avon River outside the UCSA building, having just fallen through a bridge they had constructed. The photograph was taken in 2015 during the annual Civil Engineering Bridge Challenge event.
Civil Defence says a state of emergency will remain in place in earthquake ravaged Cantebury for at least another day.
Barry McKay from Civil Defence who helped organise Students in the Student Volunteer Army cleanup silt after the earthquake.
Photograph captioned by Fairfax, "Mary McIntosh from the Hurunui Civil Defence packs up mattresses at Addington racecourse emergency centre".
Photograph captioned by Fairfax, "Steve McCarthy, assistant rescue manager with Civil Defence during a press conference following Canterbury's earthquake".
Photograph captioned by Fairfax, "Mary McIntosh from the Hurunui Civil Defence packs up mattresses at Addington racecourse emergency centre".
In practice, several competing liquefaction evaluation procedures (LEPs) are used to compute factors of safety against soil liquefaction, often for use within a liquefaction potential index (LPI) framework to assess liquefaction hazard. At present, the influence of the selected LEP on the accuracy of LPI hazard assessment is unknown, and the need for LEP-specific calibrations of the LPI hazard scale has never been thoroughly investigated. Therefore, the aim of this study is to assess the efficacy of three CPT-based LEPs from the literature, operating within the LPI framework, for predicting the severity of liquefaction manifestation. Utilising more than 7000 liquefaction case studies from the 2010–2011 Canterbury (NZ) earthquake sequence, this study found that: (a) the relationship between liquefaction manifestation severity and computed LPI values is LEP-specific; (b) using a calibrated, LEP-specific hazard scale, the performance of the LPI models is essentially equivalent; and (c) the existing LPI framework has inherent limitations, resulting in inconsistent severity predictions against field observations for certain soil profiles, regardless of which LEP is used. It is unlikely that revisions of the LEPs will completely resolve these erroneous assessments. Rather, a revised index which more adequately accounts for the mechanics of liquefaction manifestation is needed.
Photograph captioned by Fairfax, "Marlborough Civil Defence manager Ross Hamilton inspects the liquefaction damage at a property in Seabreeze Close, Bexley".
Photograph captioned by Fairfax, "Marlborough Civil Defence manager Ross Hamilton inspects the liquefaction damage at a property in Seabreeze Close, Bexley".
Photograph captioned by Fairfax, "Marlborough Civil Defence manager Ross Hamilton inspects the liquefaction damage at a property in Seabreeze Close, Bexley".
Photograph captioned by Fairfax, "Major earthquake hits Christchurch. Civil Defence base at the Art Gallery where engineers are having a briefing".
Photograph captioned by Fairfax, "Marlborough Civil Defence manager Ross Hamilton inspects the liquefaction damage at a property in Seabreeze Close, Bexley".
Slides from part one of the presentation by Dr Sonia Giovinazzi (Department of Civil and Natural Resouce Engineering) on "Recovery of Lifelines".
Barry Corbett, a Christchurch City Councillor is at the Christchurch Art Gallery which is being set up as a Civil Defence Centre.
Radio New Zealand reporter Jessica Maddock reports from the Christchurch City Art Gallery which has been converted into a Civil Defence centre.
Slides from part two of the presentation by Dr Sonia Giovinazzi (Department of Civil and Natural Resouce Engineering) on "Recovery of Lifelines".
Photograph captioned by Fairfax, "2010 Canterbury Earthquake. Spencerville Civil Defence organised a community get together, to boost community spirits. Isriah Kara (9)".
A presentation by Dr Matthew Hughes (Department of Civil and Natural Resource Engineering) on "Liquefaction Impacts on Christchurch's Water and Wastewater Networks".
The 2010-2011 Canterbury earthquakes were recorded over a dense strong motion network in the near-source region, yielding significant observational evidence of seismic complexities, and a basis for interpretation of multi-disciplinary datasets and induced damage to the natural and built environment. This paper provides an overview of observed strong motions from these events and retrospective comparisons with both empirical and physics-based ground motion models. Both empirical and physics-based methods provide good predictions of observations at short vibration periods in an average sense. However, observed ground motion amplitudes at specific locations, such as Heathcote Valley, are seen to systematically depart from ‘average’ empirical predictions as a result of near surface stratigraphic and topographic features which are well modelled via sitespecific response analyses. Significant insight into the long period bias in empirical predictions is obtained from the use of hybrid broadband ground motion simulation. The comparison of both empirical and physics-based simulations against a set of 10 events in the sequence clearly illustrates the potential for simulations to improve ground motion and site response prediction, both at present, and further in the future.
Radio New Zealand reporter Jessica Maddock reports from outside the Christchurch City Art Gallery which is being converted into a Civil Defence centre.
Radio New Zealand reporter Jessica Maddock reports from outside the Christchurch City Art Gallery which is being converted into a Civil Defence centre.
Photograph captioned by Fairfax, "A noticeboard at the Civil Defence 'bunker' under the Beehive in Wellington, on the day of the Christchurch earthquake".
When the 2010 and 2011 earthquakes created a city-wide outdoor research laboratory, UC Civil Engineering Professor Misko Cubrinovski gathered as much information as possible. This work has been recognised by the American Society of Civil Engineers (ASCE), which is presenting him with the 2019 Ralph B. Peck Award for "outstanding contributions to the geotechnical engineering profession through the publication of several insightful field case histories"
In this paper, we consider how religious leaders and Civil Defence authorities might collaborate to establish a two-way information conduit during the aftermath of a disaster. Using surveys and in-person interviews, clergy in different Christian denominations were asked about their roles in the earthquake, the needs of their congregations and the possibilities and obstacles to deeper collaboration with Civil Defence authorities.
Validating dynamic responses of engineered systems subjected to simulated ground motions is essential in scrutinising the applicability of simulated ground motions for engineering demand analyses. This paper compares the responses of two 3D building models subjected to recorded and simulated ground motions scaled to the NZS1170.5 design response spectrum, in order to evaluate the applicability of simulated ground motions for use in conventional engineering practice in New Zealand. The buildings were designed according to the NZS1170.5 and physically constructed in Christchurch prior to the 2010-2011 Canterbury earthquakes. 40 recorded ground motions from the 22 February 2011 Christchurch earthquake, along with the simulated ground motions for this event from Razafindrakoto et al. (2018) are considered. The seismic responses of the structures are principally quantified via the peak floor acceleration and maximum inter-storey drift ratio. Overall, the results indicate a general agreement in seismic demands obtained using the recorded and simulated ensembles of ground motions and provide further evidence that simulated ground motions using state-of-the-art methods can be used in code-based structural performance assessments inplace of, or in combination with, ensembles of recorded ground motions.
Drywalls are the typical infill or partitions used in new structures. They are usually located within structural frames and/or between upper and lower floor slabs in buildings. Due to the materials used in their construction, unlike masonry blocks, they can be considered as light non-structural infill/partition walls. These types of walls are especially popular in New Zealand and the USA. In spite of their popularity, little is known about their in-plane cyclic behaviour when infilled within a structural frame. The cause of this lack of knowledge can be attributed to the typical assumption that they are weak non-structural elements and are not expected to interact with the surrounding structural system significantly. However, recent earthquakes have repeatedly shown that drywalls interact with the structure and suffer severe damage at very low drift levels. In this paper, experimental test results of two typical drywall types (steel and timber framed) are reported in order to gather further information on; i) their reverse cyclic behaviour, ii) inter-storey drift levels at which they suffer different levels of damage, iii) the level of interaction with the surrounding structural frame system. The drywall specimens were tested using quasi-static reverse cyclic testing protocols within a full scale precast RC frame at the Structures Laboratory of the University of Canterbury.
La pericolosità associata ad un dato fenomeno costituisce uno dei fattori più importanti e difficili da quantificare nelle analisi di rischio, a maggior ragione quando si tratta di fenomeni complessi come nel caso della liquefazione sismica. Il presente lavoro illustra sinteticamente uno studio della pericolosità indotta al suolo da liquefazione basato su un caso campione statistico particolarmente significativo, il terremoto (Mw 6.2) che ha colpito Christchurch, Nuova Zelanda, del 2011. La notevole mole di dati disponibili, relativi alle caratteristiche geotecniche del sottosuolo, unitamente al rilievo dei danni ha consentito innanzitutto di caratterizzare la suscettibilità a liquefazione dell’area, indipendentemente dall’evento sismico, quindi di correlare statisticamente le diverse grandezze e di derivare delle curve di vulnerabilità del suolo.
This article presents a quantitative case study on the site amplification effect observed at Heathcote Valley, New Zealand, during the 2010-2011 Canterbury earthquake sequence for 10 events that produced notable ground acceleration amplitudes up to 1.4g and 2.2g in the horizontal and vertical directions, respectively. We performed finite element analyses of the dynamic response of the valley, accounting for the realistic basin geometry and the soil non-linear response. The site-specific simulations performed significantly better than both empirical ground motion models and physics based regional-scale ground motion simulations (which empirically accounts for the site effects), reducing the spectral acceleration prediction bias by a factor of two in short vibration periods. However, our validation exercise demonstrated that it was necessary to quantify the level of uncertainty in the estimated bedrock motion using multiple recorded events, to understand how much the simplistic model can over- or under-estimate the ground motion intensities. Inferences from the analyses suggest that the Rayleigh waves generated near the basin edge contributed significantly to the observed high frequency (f>3Hz) amplification, in addition to the amplification caused by the strong soil-rock impedance contrast at the site fundamental frequency. Models with and without considering soil non-linear response illustrate, as expected, that the linear elastic assumption severely overestimates ground motions in high frequencies for strong earthquakes, especially when the contribution of basin edge-generated Rayleigh waves becomes significant. Our analyses also demonstrate that the effect of pressure-dependent soil velocities on the high frequency ground motions is as significant as the amplification caused by the basin edge-generated Rayleigh waves.