Background: Up to 6 years after the 2011 Christchurch earthquakes, approximately one-third of parents in the Christchurch region reported difficulties managing the continuously high levels of distress their children were experiencing. In response, an app named Kākano was co-designed with parents to help them better support their children’s mental health. Objective: The objective of this study was to evaluate the acceptability, feasibility, and effectiveness of Kākano, a mobile parenting app to increase parental confidence in supporting children struggling with their mental health. Methods: A cluster-randomized delayed access controlled trial was carried out in the Christchurch region between July 2019 and January 2020. Parents were recruited through schools and block randomized to receive immediate or delayed access to Kākano. Participants were given access to the Kākano app for 4 weeks and encouraged to use it weekly. Web-based pre- and postintervention measurements were undertaken. Results: A total of 231 participants enrolled in the Kākano trial, with 205 (88.7%) participants completing baseline measures and being randomized (101 in the intervention group and 104 in the delayed access control group). Of these, 41 (20%) provided full outcome data, of which 19 (18.2%) were for delayed access and 21 (20.8%) were for the immediate Kākano intervention. Among those retained in the trial, there was a significant difference in the mean change between groups favoring Kākano in the brief parenting assessment (F1,39=7, P=.012) but not in the Short Warwick-Edinburgh Mental Well-being Scale (F1,39=2.9, P=.099), parenting self-efficacy (F1,39=0.1, P=.805), family cohesion (F1,39=0.4, P=.538), or parenting sense of confidence (F1,40=0.6, P=.457). Waitlisted participants who completed the app after the waitlist period showed similar trends for the outcome measures with significant changes in the brief assessment of parenting and the Short Warwick-Edinburgh Mental Well-being Scale. No relationship between the level of app usage and outcome was found. Although the app was designed with parents, the low rate of completion of the trial was disappointing. Conclusions: Kākano is an app co-designed with parents to help manage their children’s mental health. There was a high rate of attrition, as is often seen in digital health interventions. However, for those who did complete the intervention, there was some indication of improved parental well-being and self-assessed parenting. Preliminary indications from this trial show that Kākano has promising acceptability, feasibility, and effectiveness, but further investigation is warranted. Trial Registration: Australia New Zealand Clinical Trials Registry ACTRN12619001040156; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=377824&isReview=true
This project looks at how destroyed architecture, although physically lost, fundamentally continues to exist within human memories as a non-physical entity. The site chosen is Avonside Girls’ High School in Christchurch, New Zealand, a school heavily damaged during the February 22nd earthquake in 2011. The project focuses on the Main Block, a 1930s masonry building which had always been a symbol for the school and its alumni. The key theories relevant to this are studies on non-material architecture and memory as these subjects investigate the relationship between conceptual idea and the triggering of it. This research aims to study how to fortify a thought-based architecture against neglect, similar to the retrofitting of physical structures. In doing so, the importance of the emotive realm of architecture and the idea behind a building (as opposed to the built component itself) is further validated, promoting more broadminded stances regarding the significance of the idea over the object. A new method for disaster recovery and addressing trauma from lost architecture is also acquired. Factors regarding advanced structural systems and programmes are not covered within the scope of this research because the project instead explores issues regarding the boundaries between the immaterial and material. The project methodology involves communicating a narrative derived from the memories alumni and staff members have of the old school block. The approach for portraying the narrative is based on a list of strategies obtained from case studies. The final product of the research is a new design for the high school, conveyed through a set of atmospheric drawings that cross-examines the boundaries between the physical and non-physical realms by representing the version of the school that exists solely within memories.
Ongoing climate change triggers increasing temperature and more frequent extreme events which could limit optimal performance of haliotids, affect their physiology and biochemistry as well as influencing their population structure. Haliotids are a valuable nearshore fishery in a number of countries and many are showing a collapse of stocks because of overexploitation, environmental changes, loss of habitat, and disease. The haliotid in New Zealand commonly referred to as the blackfoot pāua (Haliotis iris) contribute a large and critical cultural, recreational and economic resource. Little was known about pāua responses to increasing temperature and acute environmental factors, as well as information about population size structure in Kaikoura after the earthquake 2016 and in Banks Peninsula. The aims of this study were to investigate the effects of temperature on scope for growth (SfG); physiological and biochemical responses of pāua subjected to different combined stressors including acute temperature, acute salinity and progressive hypoxia; and describe population size structure and shell morphology in different environments in Kaikoura and Banks Peninsula. The main findings of the present study found that population size structures of pāua were site-specific, and the shell length and shell height ratio of 3.25 could distinguish between stunted and non-stunted populations. The study found that high water temperature resulted in a reduction in absorbed energy from food, an increase in respiration energy, and ammonia excretion energy. Surveys were conducted at six study sites around the Canterbury Region over three years in order to better understand the population size structure and shell morphology of pāua. The findings found that the population size structure at 6 sites differed. Both juveniles and adults were found in intertidal areas at five sites. However, at Cape Three Points, pāua were found only in subtidal zones. One of the sites, Little Port Cooper, had a stunted population where only two pāua reached 125 mm in length over three years. In addition, most pāua in Little Port Cooper and Cape Three Points were adults, while Seal Reef had mostly juveniles. Wakatu Quay and Omihi had a full size range of pāua. Oaro population was dominated with juveniles and sub-adults. Recruitment and growth of pāua were successful after the earthquake in 2016. Research into pāua shell morphologies also determined that shell dimensions differed between sites. The relationships of shell length to shell width were linear and the relationship of shell length to shell height was curvilinear. Interestingly, SL:SH ratio of 3.25 is able to be used to identify stunted and non-stunted populations for pāua larger than 90 mm in length. Little Port Cooper was a stunted population with mean SL:SH ratio being 3.16. In the laboratory, scope for growth of pāua was investigated at four different temperatures of 12oC, 15oC, 18oC and 21oC over four weeks’ acclimation. The current study has found that SfG of pāua highly depended on temperature. Absorbed energy and respiration energy accounted for the highest proportion of the SfG of pāua. The respiration energy of pāua accounted for approximately 36%, 40%, 49% and 69% of the absorbed energy at 12°C, 15°C, 18°C and 21°C, respectively. The pāua at all acclimation temperatures had a positive scope for growth. The study suggested that the SfG was highest at 15°C, while the value at 21°C was the lowest. However, SfG at 18°C and 21°C decreased after 14 days of acclimation. Because of maintaining almost unchanged oxygen consumption over four weeks’ acclimation, pāua showed their poor abilities to acclimate to an increase in temperature. Therefore, they may be more vulnerable in future warming scenarios. The physiological and biochemical responses of pāua toward different combined stressors included three experiments. In terms of the acute temperature experiment, pāua were acclimated at 12oC, 15oC, 18oC or 21oC for two weeks before stepwise exposure to four temperatures of 12oC, 15oC, 18oC and 21oC every 4 hours. The acute salinity change, pāua were acclimated at 12oC, 15oC or 18oC over two weeks. Pāua were then exposed to a stepwise decrease of salinity of 2‰ every two hours from 34 – 22‰. Regarding the declining oxygen level, pāua were acclimated at 15 oC or 18oC for two weeks before exposure to one of four temperatures at 12oC, 15oC, 18oC or 21oC in one hour. After that acute progressive hypoxia was studied in closed respirometers for around six hours. The findings showed that there were interactions between combined stressors, affecting physiology of pāua (metabolism and heart rate). This suggests that environmental factors do not have a separate effect, but they also have interactions that enhance negative effects on pāua. Also, both oxygen uptake and heart rate responded quickly to temperature change and increased with rising temperature. On the other hand, oxygen uptake and heart rate decreased with reducing salinity and progressive hypoxia (before critical oxygen tension - Pcrit). Pcrit over four acute temperature exposures, ranged between 30.2 and 80.0 mmHg, depending on the exposure temperature. Acclimation temperature, combined with acute temperature, salinity or hypoxia stress affected the biochemistry of pāua. Pāua are osmoconformers so decreased salinity resulted in reducing haemolymph ionic concentration and increasing body volume. They were hypo-ionic with respect to sodium and potassium over the salinity ranges of 34 - 22‰. Haemocyanin accounts for a large pecentage of haemolymph protein, so trends of protein followed haemocyanin. Pāua tended to store oxygen in haemocyanin under extreme salinity stress at 22‰ and extreme hypoxia around 10 mmHg, rather than in oxygen transport. In conclusion, pāua at different sites had different population structures and morphologies. Pāua are sensitive to environmental stressors. They consumed more oxygen at high temperatures because they do not have thermal acclimation capacity. They are also osmoconformers with haemolymph sodium and potassium decreasing with salinity medium. Under progressive hypoxia, pāua could regulate oxygen and heart rate until Pcrit depending on temperature. Acute environmental changes also disturbed haemolyph parameters. 12°C and 15°C could be in the range of optimal temperature with higher SfG and less stress when exposed to acute environmental changes. Meanwhile long term exposure to 21°C is likely to be outside of the optimal range for the pāua. With ongoing climate change, pāua populations are more vulnerable so conservation is necessary. The research contributes to improving fishery management, providing insights into different environmental stressors affecting the energy demand and physiological and biochemical responses of pāua. It also allow to predicting the growth patterns and responses of pāua to adapt to climate change.
The structure and geomorphology of active orogens evolves on time scales ranging from a single earthquake to millions of years of tectonic deformation. Analysis of crustal deformation using new and established remote sensing techniques, and integration of these data with field mapping, geochronology and the sedimentary record, create new opportunities to understand orogenic evolution over these timescales. Timor Leste (East Timor) lies on the northern collisional boundary between continental crust from the Australian Plate and the Banda volcanic arc. GPS studies have indicated that the island of Timor is actively shortening. Field mapping and fault kinematic analysis of an emergent Pliocene marine sequence identifies gentle folding, overprinted by a predominance of NW-SE oriented dextral-normal faults and NE-SW oriented sinistral-normal faults that collectively bound large (5-20km2) bedrock massifs throughout the island. These fault systems intersect at non-Andersonian conjugate angles of approximately 120° and accommodate an estimated 20 km of orogen-parallel extension. Folding of Pliocene rocks in Timor may represent an early episode of contraction but the overall pattern of deformation is one of lateral crustal extrusion sub-parallel to the Banda Arc. Stratigraphic relationships suggest that extrusion began prior to 5.5 Ma, during and after initial uplift of the orogen. Sedimentological, geochemical and Nd isotope data indicate that the island of Timor was emergent and shedding terrigenous sediment into carbonate basins prior to 4.5 Ma. Synorogenic tectonic and sedimentary phases initiated almost synchronously across much of Timor Leste and <2 Myr before similar events in West Timor. An increase in plate coupling along this obliquely converging boundary, due to subduction of an outlying continental plateau at the Banda Trench, is proposed as a mechanism for uplift that accounts for orogen-parallel extension and early uplift of Timor Leste. Rapid bathymetric changes around Timor are likely to have played an important role in evolution of the Indonesian Seaway. The 2010 Mw 7.1 Darfield (Canterbury) earthquake in New Zealand was complex, involving multiple faults with strike-slip, reverse and normal displacements. Multi-temporal cadastral surveying and airborne light detection and ranging (LiDAR) surveys allowed surface deformation at the junction of three faults to be analyzed in this study in unprecedented detail. A nested, localized restraining stepover with contractional bulging was identified in an area with the overall fault structure of a releasing bend, highlighting the surface complexities that may develop in fault interaction zones during a single earthquake sequence. The earthquake also caused river avulsion and flooding in this area. Geomorphic investigations of these rivers prior to the earthquake identify plausible precursory patterns, including channel migration and narrowing. Comparison of the pre and post-earthquake geomorphology of the fault rupture also suggests that a subtle scarp or groove was present along much of the trace prior to the Darfield earthquake. Hydrogeology and well logs support a hypothesis of extended slip history and suggests that that the Selwyn River fan may be infilling a graben that has accumulated late Quaternary vertical slip of <30 m. Investigating fault behavior, geomorphic and sedimentary responses over a multitude of time-scales and at different study sites provides insights into fault interactions and orogenesis during single earthquakes and over millions of years of plate boundary deformation.
The development of Digital City technologies to manage and visualise spatial information has increasingly become a focus of the research community, and application by city authorities. Traditionally, the Geographic Information Systems (GIS) and Building Information Models (BIM) underlying Digital Cities have been used independently. However, integrating GIS and BIM into a single platform provides benefits for project and asset management, and is applicable to a range of issues. One of these benefits is the means to access and analyse large datasets describing the built environment, in order to characterise urban risk from and resilience to natural hazards. The aim of this thesis is to further explore methodologies of integration in two distinct areas. The first, integration through connectivity of heterogeneous datasets where GIS spatial infrastructure data is merged with 3D BIM building data to create a digital twin. Secondly, integration through analysis whereby data from the digital twin are extracted and integrated with computational models. To achieve this, a workflow was developed to identify the required datasets of a digital twin, and develop a process of integrating those datasets through a combination of; semi-autonomous conversion, translation and extension of data; and semantic web and services-based processes. Through use of a designed schema, the data were streamed in a homogenous format in a web-based platform. To demonstrate the value of this workflow with respect to urban risk and resilience, the process was applied to the Taiora: Queen Elizabeth II recreation and sports centre in eastern Christchurch, New Zealand. After integration of as-built GIS and BIM datasets, targeted data extraction was implemented, with outputs tailored for analysis in an infrastructure serviceability loss model, which assessed potable water network performance in the 22nd February 2011 Christchurch Earthquake. Using the same earthquake conditions as the serviceability loss model, performance of infrastructure assets in service at the time of the 22nd February 2011 Christchurch Earthquake was compared to new assets rebuilt at the site, post-earthquake. Due to improved potable water infrastructure resilience resulting from installation of ductile piles, a decrease of 35.5% in the probability of service loss was estimated in the serviceability loss model. To complete the workflow, the results from the external analysis were uploaded to the web-based platform. One of the more significant outcomes from the workflow was the identification of a lack of mandated metadata standards for fittings/valves connecting a building to private laterals. Whilst visually the GIS and BIM data show the building and pipes as connected, the semantic data does not include this connectivity relationship. This has no material impact on the current serviceability loss model as it is not one of the defined parameters. However, a proposed modification to the model would utilise the metadata to further assess the physical connection robustness, and increase the number of variables for estimating probability of service loss. This thesis has made a methodological contribution to urban resilience analysis by demonstrating how readily available up-to-date building and infrastructure data can be integrated, and with tailored extraction from a Digital City platform, be used for disaster impact analysis in an external computational engine, with results in turn imported and visualised in the Digital City platform. The workflow demonstrated that translation and integration of data would be more successful if a regional/national mandate was implemented for the submission of consent documentation in a specified standard BIM format. The results of this thesis have identified that the key to ensuring the success of an integrated tool lies in the initial workflow required to safeguard that all data can be either captured or translated in an interoperable format.
The development of Digital City technologies to manage and visualise spatial information has increasingly become a focus of the research community, and application by city authorities. Traditionally, the Geographic Information Systems (GIS) and Building Information Models (BIM) underlying Digital Cities have been used independently. However, integrating GIS and BIM into a single platform provides benefits for project and asset management, and is applicable to a range of issues. One of these benefits is the means to access and analyse large datasets describing the built environment, in order to characterise urban risk from and resilience to natural hazards. The aim of this thesis is to further explore methodologies of integration in two distinct areas. The first, integration through connectivity of heterogeneous datasets where GIS spatial infrastructure data is merged with 3D BIM building data to create a digital twin. Secondly, integration through analysis whereby data from the digital twin are extracted and integrated with computational models. To achieve this, a workflow was developed to identify the required datasets of a digital twin, and develop a process of integrating those datasets through a combination of; semi-autonomous conversion, translation and extension of data; and semantic web and services-based processes. Through use of a designed schema, the data were streamed in a homogenous format in a web-based platform. To demonstrate the value of this workflow with respect to urban risk and resilience, the process was applied to the Taiora: Queen Elizabeth II recreation and sports centre in eastern Christchurch, New Zealand. After integration of as-built GIS and BIM datasets, targeted data extraction was implemented, with outputs tailored for analysis in an infrastructure serviceability loss model, which assessed potable water network performance in the 22nd February 2011 Christchurch Earthquake. Using the same earthquake conditions as the serviceability loss model, performance of infrastructure assets in service at the time of the 22nd February 2011 Christchurch Earthquake was compared to new assets rebuilt at the site, post-earthquake. Due to improved potable water infrastructure resilience resulting from installation of ductile piles, a decrease of 35.5% in the probability of service loss was estimated in the serviceability loss model. To complete the workflow, the results from the external analysis were uploaded to the web-based platform. One of the more significant outcomes from the workflow was the identification of a lack of mandated metadata standards for fittings/valves connecting a building to private laterals. Whilst visually the GIS and BIM data show the building and pipes as connected, the semantic data does not include this connectivity relationship. This has no material impact on the current serviceability loss model as it is not one of the defined parameters. However, a proposed modification to the model would utilise the metadata to further assess the physical connection robustness, and increase the number of variables for estimating probability of service loss. This thesis has made a methodological contribution to urban resilience analysis by demonstrating how readily available up-to-date building and infrastructure data can be integrated, and with tailored extraction from a Digital City platform, be used for disaster impact analysis in an external computational engine, with results in turn imported and visualised in the Digital City platform. The workflow demonstrated that translation and integration of data would be more successful if a regional/national mandate was implemented for the submission of consent documentation in a specified standard BIM format. The results of this thesis have identified that the key to ensuring the success of an integrated tool lies in the initial workflow required to safeguard that all data can be either captured or translated in an interoperable format.
Abstract The original intention for the Partnership Community Worker (PCW) project in 2006 was for it to be an extension of the Pegasus Health General Practice and furthermore to be a bridge between the community and primary healthcare. It was believed that a close working relationship between the Practice Nurse and the PCW would help the target population of Māori, Pacifica and low income people to address and overcome their perceived barriers to healthcare which included: finance, transport, anxiety, cultural issues, communication, or lack of knowledge. Seven years later although the PCW project has been deemed a success in the Canterbury District Health Board annual reports (2013-14) and community and government agencies, including the Christchurch Resettlement Service (2012), many of the Pegasus Health General Practices have not utilised the project to its full extent, hence the need for this research. I was interested in finding out in the first instance if the model had changed and, if so why, and in the second instance if the promotional material currently distributed by Pegasus Health Primary Health Organisation reflected the daily practice of the PCW. A combination of methods were used including: surveys to the Pegasus Health General Practices, interviews with PCWs, interviews with managers of both the PCW host organisations and referring agencies to the PCW project. All the questions asked of all the participants in this research were focussed on their own perception of the role of the PCW. Results showed that the model has changed and although the publications were not reflecting the original intention of the project they did reflect the daily practice of the PCWs who are now struggling to meet much wider community expectations and needs. Key Results: Partnership Community Worker (PCW) interviews: Seventeen PCWs of the 19 employed were interviewed face to face. A number expressed interest in more culturally specific training and some are pursuing qualifications in social work; for many pay parity is an issue. In addition, many felt overwhelmed by the expectations around clients with mental health issues and housing issues now, post-earthquakes. Medical Practice surveys: Surveys were sent to eighty-two Pegasus Health medical practices and of these twenty five were completed. Results showed the full capacity of the PCW role was not clearly understood by all with many believing it was mostly a transport service. Those who did understand the full complexity of the role were very satisfied with the outcomes. PCW Host Community Manager Interviews: Of the ten out of twelve managers interviewed, some wished for more communication with Pegasus Health management because they felt aspects of both the PCW role and their own role as managers had become blurred over time. Referring organisations: Fifteen of the fifty referring community or government organisations participated. The overall satisfaction of the service was high and some acknowledged the continuing need for PCWs to be placed in communities where they were well known and trusted. Moreover results also showed that both the Canterbury earthquakes 2010-2011 and the amalgamation of Partnership Health PHO and Pegasus Health Charitable Limited in 2013 have contributed to the change of the model. Further future research may also be needed to examine the long term effects on the people of Canterbury involved in community work during the 2011-2014 years.
Spatial variations in river facies exerted a strong influence on the distribution of liquefaction features observed in Christchurch during the 2010-11 Canterbury Earthquake Sequence (CES). Liquefaction and liquefaction-induced ground deformation was primarily concentrated near modern waterways and areas underlain by Holocene fluvial deposits with shallow water tables (< 1 to 2 m). In southern Christchurch, spatial variations of liquefaction and subsidence were documented in the suburbs within inner meander loops of the Heathcote River. Newly acquired geospatial data, geotechnical reports and eye-witness discussions are compiled to provide a detailed account of the surficial effects of CES liquefaction and ground deformation adjacent to the Heathcote River. LiDAR data and aerial photography are used to produce a new series of original figures which reveal the locations of recurrent liquefaction and subsidence. To investigate why variable liquefaction patterns occurred, the distribution of surface ejecta and associated ground damage is compared with near-surface sedimentologic, topographic, and geomorphic variability to seek relationships between the near-surface properties and observed ground damages. The most severe liquefaction was concentrated within a topographic low in the suburb of St Martins, an inner meander loop of the Heathcote River, with liquefaction only minor or absent in the surrounding areas. Subsurface investigations at two sites in St Martins enable documentation of fluvial stratigraphy, the expressions of liquefaction, and identification of pre-CES liquefaction features. Excavation to water table depths (~1.5 m below the surface) across sand boils reveals multiple generations of CES liquefaction dikes and sills that cross-cut Holocene fluvial and anthropogenic stratigraphy. Based on in situ geotechnical tests (CPT) indicating sediment with a factor of safety < 1, the majority of surface ejecta was sourced from well-sorted fine to medium sand at < 5 m depth, with the most damaging liquefaction corresponding with the location of a low-lying sandy paleochannel, a remnant river channel from the Holocene migration of the meander in St Martins. In the adjacent suburb of Beckenham, where migration of the Heathcote River has been laterally confined by topography associated with the volcanic lithologies of Banks Peninsula, severe liquefaction was absent with only minor sand boils occurring closest to the modern river channel. Auger sampling across the suburb revealed thick (>1 m) clay-rich overbank and back swamp sediments that produced a stratigraphy which likely confined the units susceptible to liquefaction and prevented widespread ejection of liquefied material. This analysis suggests river migration promotes the formation and preservation of fluvial deposits prone to liquefaction. Trenching revealed the strongest CES earthquakes with large vertical accelerations favoured sill formation and severe subsidence at highly susceptible locations corresponding with an abandoned channel. Less vulnerable sites containing deeper and thinner sand bodies only liquefied in the strongest and most proximal earthquakes forming minor localised liquefaction features. Liquefaction was less prominent and severe subsidence was absent where lateral confinement of a Heathcote meander has promoted the formation of fluvial stratum resistant to liquefaction. Correlating CES liquefaction with geomorphic interpretations of Christchurch’s Heathcote River highlights methods in which the performance of liquefaction susceptibility models can be improved. These include developing a reliable proxy for estimating soil conditions in meandering fluvial systems by interpreting the geology and geomorphology, derived from LiDAR data and modern river morphology, to improve the methods of accounting for the susceptibility of an area. Combining geomorphic interpretations with geotechnical data can be applied elsewhere to identify regional liquefaction susceptibilities, improve existing liquefaction susceptibility datasets, and predict future earthquake damage.
Architecture and music have a long intertwining history.These respective creative forces many times have collaborated into monumental place, harboured rich occasion, been catalyst for cultural movement and defined generations. Together they transcend their respective identities. From dinky local church to monstrous national stadia, together they are an intense concentration, a powerfully addictive dosage where architecture is the place, music is the faith, and people are the reason. Music is a programme that architecture often celebrates in poetic and grand fashion; a superficial excuse to symbolise their creative parallels. But their relationship is much richer and holds more value than just the opportunity to attempt architectural metaphor.While music will always overshadow the architecture in the sense of a singular event, architecture is like the soundman behind the mixing desk. It’s not the star front and centre grabbing your attention, but is responsible for framing the star. It is the foundational backdrop, a critical pillar. Great architecture can help make great music. In this sense music is a communication of architecture, it is the ultimate creative function. Christchurch, New Zealand, is a city whose story changed in an instant. The seismic events of 2010 and 2011 have become the overriding subject of its historical narrative, as it will be for years to come. Disaster redefines place (the town of Napier, struck by an earthquake in 1931, exemplifies this). There is no quantifiable justification for an exploration of architecture and music within the context of Christchurch. The Town Hall, one of New Zealand’s most architecturally significant buildings, is under repair. The Christ Church Cathedral will more than likely be rebuilt to some degree of its former self. But these are echoes of the city that Christchurch was.They are saved because they are artefact. Evidence of history.This thesis makes the argument for the new, the better than before, and for the making of opportunity from disaster, by proposing a ‘new’ town hall, conceived from the sound of old.
The purpose of this thesis is to conduct a detailed examination of the forward-directivity characteristics of near-fault ground motions produced in the 2010-11 Canterbury earthquakes, including evaluating the efficacy of several existing empirical models which form the basis of frameworks for considering directivity in seismic hazard assessment. A wavelet-based pulse classification algorithm developed by Baker (2007) is firstly used to identify and characterise ground motions which demonstrate evidence of forward-directivity effects from significant events in the Canterbury earthquake sequence. The algorithm fails to classify a large number of ground motions which clearly exhibit an early-arriving directivity pulse due to: (i) incorrect pulse extraction resulting from the presence of pulse-like features caused by other physical phenomena; and (ii) inadequacy of the pulse indicator score used to carry out binary pulse-like/non-pulse-like classification. An alternative ‘manual’ approach is proposed to ensure 'correct' pulse extraction and the classification process is also guided by examination of the horizontal velocity trajectory plots and source-to-site geometry. Based on the above analysis, 59 pulse-like ground motions are identified from the Canterbury earthquakes , which in the author's opinion, are caused by forward-directivity effects. The pulses are also characterised in terms of their period and amplitude. A revised version of the B07 algorithm developed by Shahi (2013) is also subsequently utilised but without observing any notable improvement in the pulse classification results. A series of three chapters are dedicated to assess the predictive capabilities of empirical models to predict the: (i) probability of pulse occurrence; (ii) response spectrum amplification caused by the directivity pulse; (iii) period and amplitude (peak ground velocity, PGV) of the directivity pulse using observations from four significant events in the Canterbury earthquakes. Based on the results of logistic regression analysis, it is found that the pulse probability model of Shahi (2013) provides the most improved predictions in comparison to its predecessors. Pulse probability contour maps are developed to scrutinise observations of pulses/non-pulses with predicted probabilities. A direct comparison of the observed and predicted directivity amplification of acceleration response spectra reveals the inadequacy of broadband directivity models, which form the basis of the near-fault factor in the New Zealand loadings standard, NZS1170.5:2004. In contrast, a recently developed narrowband model by Shahi & Baker (2011) provides significantly improved predictions by amplifying the response spectra within a small range of periods. The significant positive bias demonstrated by the residuals associated with all models at longer vibration periods (in the Mw7.1 Darfield and Mw6.2 Christchurch earthquakes) is likely due to the influence of basin-induced surface waves and non-linear soil response. Empirical models for the pulse period notably under-predict observations from the Darfield and Christchurch earthquakes, inferred as being a result of both the effect of nonlinear site response and influence of the Canterbury basin. In contrast, observed pulse periods from the smaller magnitude June (Mw6.0) and December (Mw5.9) 2011 earthquakes are in good agreement with predictions. Models for the pulse amplitude generally provide accurate estimates of the observations at source-to-site distances between 1 km and 10 km. At longer distances, observed PGVs are significantly under-predicted due to their slower apparent attenuation. Mixed-effects regression is employed to develop revised models for both parameters using the latest NGA-West2 pulse-like ground motion database. A pulse period relationship which accounts for the effect of faulting mechanism using rake angle as a continuous predictor variable is developed. The use of a larger database in model development, however does not result in improved predictions of pulse period for the Darfield and Christchurch earthquakes. In contrast, the revised model for PGV provides a more appropriate attenuation of the pulse amplitude with distance, and does not exhibit the bias associated with previous models. Finally, the effects of near-fault directivity are explicitly included in NZ-specific probabilistic seismic hazard analysis (PSHA) using the narrowband directivity model of Shahi & Baker (2011). Seismic hazard analyses are conducted with and without considering directivity for typical sites in Christchurch and Otira. The inadequacy of the near-fault factor in the NZS1170.5: 2004 is apparent based on a comparison with the directivity amplification obtained from PSHA.
Liquefaction affects late Holocene, loose packed and water saturated sediment subjected to cyclical shear stress. Liquefaction features in the geological record are important off-fault markers that inform about the occurrence of moderate to large earthquakes (> 5 Mw). The study of contemporary liquefaction features provides a better understanding of where to find past (paleo) liquefaction features, which, if identified and dated, can provide information on the occurrence, magnitude and timing of past earthquakes. This is particularly important in areas with blind active faults.
The extensive liquefaction caused by the 2010-2011 Canterbury Earthquake Sequence (CES) gave the geoscience community the opportunity to study the liquefaction process in different settings (alluvial, coastal and estuarine), investigating different aspects (e.g. geospatial correlation with landforms, thresholds for peak ground acceleration, resilience of infrastructures), and to collect a wealth geospatial dataset in the broad region of the Canterbury Plains.
The research presented in this dissertation examines the sedimentary architecture of two environments, the alluvial and coastal settings, affected by liquefaction during the CES. The novel aim of this study is to investigate how landform and subsurface sedimentary architecture influence liquefaction and its surface manifestation, to provide knowledge for locating studies of paleoliquefaction in future.
Two study cases documented in the alluvial setting showed that liquefaction features affected a crevasse splay and point bar ridges. However, the liquefaction source layer was linked to paleochannel floor deposits below the crevasse splay in the first case, and to the point bar deposits themselves in the second case.
This research documents liquefaction features in the coastal dune system of the Canterbury Plains in detail for the first time. In the coastal dune setting the liquefiable layer is near the surface. The pore water pressure is vented easily because the coastal dune soil profile is entirely composed of non-cohesive, very well sorted sandy sediment that weakly resists disturbance from fluidised sediment under pressure. As a consequence, the liquefied flow does not need to find a specific crack through which the sediment is vented at the surface; instead, the liquefied sand finds many closely spaced conduits to vent its excess of pore water pressure. Therefore, in the coastal dune setting it is rare to observe discrete dikes (as they are defined in the alluvial setting), instead A horizon delamination (splitting) and blistering (near surface sills) are more common. The differences in styles of surface venting lead to contrasts in patterns of ejecta in the two environments. Whereas the alluvial environment is characterised by coalesced sand blows forming lineations, the coastal dune environment hosts apparently randomly distributed isolated sand blows often associated with collapse features.
Amongst the techniques tested for the first time to investigate liquefaction features are: 3D GPR, which improved the accuracy of the trenching even six years after the liquefaction events; thin section analysis to investigate sediment fabric, which helped to discriminate liquefied sediment from its host sediment, and modern from paleoliquefaction features; a Random Forest classification based on the CES liquefaction map, which was used to test relationships between surface manifestation of liquefaction and topographic parameters. The results from this research will be used to target new study sites for future paleoliquefaction research and thus will improve the earthquake hazard assessment across New Zealand.
The Eastern Humps and Leader faults, situated in the Mount Stewart Range in North Canterbury, are two of the ≥17 faults which ruptured during the 2016 MW7.8 Kaikōura Earthquake. The earthquake produced complex, intersecting ground ruptures of these faults and the co-seismic uplift of the Mount Stewart Range. This thesis aims to determine how these two faults accommodated deformation during the 2016 earthquake and how they interact with each other and with pre-existing geological structures. In addition, it aims to establish the most likely subsurface geometry of the fault complex across the Mount Stewart Range, and to investigate the paleoseismic history of the Leader Fault. The Eastern Humps Fault strikes ~240° and dips 80° to 60° to the northwest and accommodated right- lateral – reverse-slip, with up to 4 m horizontal and 2 m vertical displacement in the 2016 earthquake. The strike of the Leader Fault varies from ~155 to ~300°, and dips ~30 to ~80° to the west/northwest, and mainly accommodated left-lateral – reverse-slip of up to 3.5 m horizontal and 3.5 m vertical slip in the 2016 earthquake. On both the Eastern Humps and Leader faults the slip is variable along strike, with areas of low total displacement and areas where horizontal and vertical displacement are negatively correlated. Fault traces with low total displacement reflect the presence of off-fault (distributed) displacement which is not being captured with field measurements. The negative correlation of horizontal and vertical displacement likely indicates a degree of slip partitioning during the 2016 earthquake on both the Eastern Humps and Leader faults. The Eastern Humps and Leader faults have a complex, interdependent relationship with the local bedrock geology. The Humps Fault appears to be a primary driver of ongoing folding and deformation of the local Mendip Syncline and folding of the Mount Stewart Range, which probably began prior to, or synchronous with, initial rupture of The Humps Fault. The Leader Fault appears to use existing lithological weaknesses in the Cretaceous-Cenozoic bedrock stratigraphy to rupture to the surface. This largely accounts for the strong variability on the strike and dip of the Leader Fault, as the geometry of the surface ruptures tend to reflect the strike and dip of the geological strata which it is rupturing through. The Leader Fault may also accommodate some degree of flexural slip in the Cenozoic cover sequence of the Mendip Syncline, contributing to the ongoing growth of the fold. The similarity between topography and uplift profiles from the 2016 earthquake suggest that growth of the Mount Stewart Range has been primarily driven by multiple (>500) discrete earthquakes that rupture The Humps and Leader faults. The spatial distribution of surface displacements across the Mount Stewart Range is more symmetrical than would be expected if uplift is driven primarily by The Humps and Leader faults alone. Elastic dislocation forward models were used to model potential sub-surface geometries and the resulting patterns of deformation compared to photogrammetry-derived surface displacements. Results show a slight preference for models with a steeply southeast-dipping blind fault, coincident with a zone of seismicity at depth, as a ‘backthrust’ to The Humps and Leader faults. This inferred Mount Stewart Fault accommodated contractional strain during the 2016 earthquake and contributes to the ongoing uplift of the Mount Stewart Range with a component of folding. Right-lateral and reverse shear stress change on the Hope Fault was also modelled using Coulomb 3.3 software to examine whether slip on The Humps and Leader faults could transfer enough stress onto the Hope Fault to trigger through-going rupture. Results indicate that during the 2016 earthquake right-lateral shear and reverse stress only increased on the Hope Fault in small areas to the west of the Leader Fault, and similar ruptures would be unlikely to trigger eastward propagating rupture unless the Hope Fault was close to failure prior to the earthquake. Paleoseismic trenches were excavated on the Leader Fault at four locations from 2018 to 2020, revealing near surface (< 4m depth) contractional deformation of Holocene stratigraphy. Three of the trench locations uncovered clear evidence for rupture of the Leader Fault prior to 2016, with fault displacement of near surface stratigraphy being greater than displacement recorded during the 2016 earthquake. Radiocarbon dating of in-situ organic material from two trenches indicate a date of the penultimate earthquake on the Leader Fault within the past 1000 years. This date is consistent with The Humps and Leader faults having ruptured simultaneously in the past, and with multi-fault ruptures involving The Humps, Leader, Hundalee and Stone Jug faults having occurred prior to the 2016 Kaikōura earthquake. Overall, the results contribute to an improved understanding of the Kaikōura earthquake and highlight the importance of detailed structural and paleoseismic investigations in determining controls on earthquake ‘complexity’.
Liquefaction-induced lateral spreading in large seismic events often results in pervasive and costly damage to engineering structures and lifelines, making it a critical component of engineering design. However, the complex nature of this phenomenon leads to designing for such a hazard extremely challenging and there is a clear for an improved understanding and predicting liquefaction-induced lateral spreading. The 2010-2011 Canterbury (New Zealand) Earthquakes triggered severe liquefaction-induced lateral spreading along the streams and rivers of the Christchurch region, causing extensive damage to roads, bridges, lifelines, and structures in the vicinity. The unfortunate devastation induced from lateral spreading in these events also rendered the rare opportunity to gain an improved understanding of lateral spreading displacements specific to the Christchurch region. As part of this thesis, the method of ground surveying was employed following the 4 September 2010 Darfield (Mw 7.1) and 22 February 2011 Christchurch (Mw 6.2) earthquakes at 126 locations (19 repeated) throughout Christchurch and surrounding suburbs. The method involved measurements and then summation of crack widths along a specific alignment (transect) running approximately perpendicular to the waterway to indicate typically a maximum lateral displacement at the bank and reduction of the magnitude of displacements with distance from the river. Rigorous data processing and comparisons with alternative measurements of lateral spreading were performed to verify results from field observations and validate the method of ground surveying employed, as well as highlight the complex nature of lateral spreading displacements. The welldocumented field data was scrutinized to gain an understanding of typical magnitudes and distribution patterns (distribution of displacement with distance) of lateral spreading observed in the Christchurch area. Maximum displacements ranging from less than 10 cm to over 3.5 m were encountered at the sites surveyed and the area affected by spreading ranged from less than 20 m to over 200 m from the river. Despite the highly non-uniform displacements, four characteristic distribution patterns including large, distributed ground displacements, block-type movements, large and localized ground displacements, and areas of little to no displacements were identified. Available geotechnical, seismic, and topographic data were collated at the ground surveying sites for subsequent analysis of field measurements. Two widely-used empirical models (Zhang et al. (2004), Youd et al. (2002)) were scrutinized and applied to locations in the vicinity of field measurements for comparison with model predictions. The results indicated generally poor correlation (outside a factor of two) with empirical predictions at most locations and further validated the need for an improved, analysis- based method of predicting lateral displacements that considers the many factors involved on a site-specific basis. In addition, the development of appropriate model input parameters for the Youd et al. (2002) model led to a site-specific correlation of soil behavior type index, Ic, and fines content, FC, for sites along the Avon River in Christchurch that matched up well with existing Ic – FC relationships commonly used in current practice. Lastly, a rigorous analysis was performed for 25 selected locations of ground surveying measurements along the Avon River where ground slope conditions are mild (-1 to 2%) and channel heights range from about 2 – 4.5 m. The field data was divided into categories based on the observed distribution pattern of ground displacements including: large and distributed, moderate and distributed, small to negligible, and large and localized. A systematic approach was applied to determine potential critical layers contributing to the observed displacement patterns which led to the development of characteristic profiles for each category considered. The results of these analyses outline an alternative approach to the evaluation of lateral spreading in which a detailed geotechnical analysis is used to identify the potential for large spreading displacements and likely spatial distribution patterns of spreading. Key factors affecting the observed magnitude and distribution of spreading included the thickness of the critical layer, relative density, soil type and layer continuity. It was found that the large and distributed ground displacements were associated with a thick (1.5 – 2.5 m) deposit of loose, fine to silty sand (qc1 ~4-7 MPa, Ic 1.9-2.1, qc1n_cs ~50-70) that was continuous along the bank and with distance from the river. In contrast, small to negligible displacements were characterized by an absence of or relatively thin (< 1 m), discontinuous critical layer. Characteristic features of the moderate and distributed displacements were found to be somewhere between these two extremes. The localized and large displacements showed a characteristic critical layer similar to that observed in the large and distributed sites but that was not continuous and hence leading to the localized zone of displacement. The findings presented in this thesis illustrate the highly complex nature of lateral displacements that cannot be captured in simplified models but require a robust geotechnical analysis similar to that performed for this research.
In September 2010 and February 2011, the Canterbury region experienced devastating earthquakes with an estimated economic cost of over NZ$40 billion (Parker and Steenkamp, 2012; Timar et al., 2014; Potter et al., 2015). The insurance market played an important role in rebuilding the Canterbury region after the earthquakes. Homeowners, insurance and reinsurance markets and New Zealand government agencies faced a difficult task to manage the rebuild process. From an empirical and theoretic research viewpoint, the Christchurch disaster calls for an assessment of how the insurance market deals with such disasters in the future. Previous studies have investigated market responses to losses in global catastrophes by focusing on the insurance supply-side. This study investigates both demand-side and supply-side insurance market responses to the Christchurch earthquakes. Despite the fact that New Zealand is prone to seismic activities, there are scant previous studies in the area of earthquake insurance. This study does offer a unique opportunity to examine and document the New Zealand insurance market response to catastrophe risk, providing results critical for understanding market responses after major loss events in general. A review of previous studies shows higher premiums suppress demand, but how higher premiums and a higher probability of risk affect demand is still largely unknown. According to previous studies, the supply of disaster coverage is curtailed unless the market is subsidised, however, there is still unsettled discussion on why demand decreases with time from the previous disaster even when the supply of coverage is subsidised by the government. Natural disaster risks pose a set of challenges for insurance market players because of substantial ambiguity associated with the probability of such events occurring and high spatial correlation of catastrophe losses. Private insurance market inefficiencies due to high premiums and spatially concentrated risks calls for government intervention in the provision of natural disaster insurance to avert situations of noninsurance and underinsurance. Political economy considerations make it more likely for government support to be called for if many people are uninsured than if few people are uninsured. However, emergency assistance for property owners after catastrophe events can encourage most property owners to not buy insurance against natural disaster and develop adverse selection behaviour, generating larger future risks for homeowners and governments. On the demand-side, this study has developed an intertemporal model to examine how demand for insurance changes post-catastrophe, and how to model it theoretically. In this intertemporal model, insurance can be sought in two sequential periods of time, and at the second period, it is known whether or not a loss event happened in period one. The results show that period one demand for insurance increases relative to the standard single period model when the second period is taken into consideration, period two insurance demand is higher post-loss, higher than both the period one demand and the period two demand without a period one loss. To investigate policyholders experience from the demand-side perspective, a total of 1600 survey questionnaires were administered, and responses from 254 participants received representing a 16 percent response rate. Survey data was gathered from four institutions in Canterbury and is probably not representative of the entire population. The results of the survey show that the change from full replacement value policy to nominated replacement value policy is a key determinant of the direction of change in the level of insurance coverage after the earthquakes. The earthquakes also highlighted the plight of those who were underinsured, prompting policyholders to update their insurance coverage to reflect the estimated cost of re-building their property. The survey has added further evidence to the existing literature, such as those who have had a recent experience with disaster loss report increased risk perception if a similar event happens in future with females reporting a higher risk perception than males. Of the demographic variables, only gender has a relationship with changes in household cover. On the supply-side, this study has built a risk-based pricing model suitable to generate a competitive premium rate for natural disaster insurance cover. Using illustrative data from the Christchurch Red-zone suburbs, the model generates competitive premium rates for catastrophe risk. When the proposed model incorporates the new RMS high-definition New Zealand Earthquake Model, for example, insurers can find the model useful to identify losses at a granular level so as to calculate the competitive premium. This study observes that the key to the success of the New Zealand dual insurance system despite the high prevalence of catastrophe losses are; firstly the EQC’s flat-rate pricing structure keeps private insurance premiums affordable and very high nationwide homeowner take-up rates of natural disaster insurance. Secondly, private insurers and the EQC have an elaborate reinsurance arrangement in place. By efficiently transferring risk to the reinsurer, the cost of writing primary insurance is considerably reduced ultimately expanding primary insurance capacity and supply of insurance coverage.
One of the great challenges facing human systems today is how to prepare for, manage, and adapt successfully to the profound and rapid changes wreaked by disasters. Wellington, New Zealand, is a capital city at significant risk of devastating earthquake and tsunami, potentially requiring mass evacuations with little or short notice. Subsequent hardship and suffering due to widespread property damage and infrastructure failure could cause large areas of the Wellington Region to become uninhabitable for weeks to months. Previous research has shown that positive health and well-being are associated with disaster-resilient outcomes. Preventing adverse outcomes before disaster strikes, through developing strengths-based skill sets in health-protective attitudes and behaviours, is increasingly advocated in disaster research, practise, and management. This study hypothesised that well-being constructs involving an affective heuristic play vital roles in pathways to resilience as proximal determinants of health-protective behaviours. Specifically, this study examined the importance of health-related quality of life and subjective well-being in motivating evacuation preparedness, measured in a community sample (n=695) drawn from the general adult population of Wellington’s isolated eastern suburbs. Using a quantitative epidemiological approach, the study measured the prevalence of key quality of life indicators (physical and mental health, emotional well-being or “Sense of Coherence”, spiritual well-being, social well-being, and life satisfaction) using validated psychometric scales; analysed the strengths of association between these indicators and the level of evacuation preparedness at categorical and continuous levels of measurement; and tested the predictive power of the model to explain the variance in evacuation preparedness activity. This is the first study known to examine multi-dimensional positive health and global well-being as resilient processes for engaging in evacuation preparedness behaviour. A cross-sectional study design and quantitative survey were used to collect self-report data on the study variables; a postal questionnaire was fielded between November 2008 and March 2009 to a sampling frame developed through multi-stage cluster randomisation. The survey response rate was 28.5%, yielding a margin of error of +/- 3.8% with 95% confidence and 80% statistical power to detect a true correlation coefficient of 0.11 or greater. In addition to the primary study variables, data were collected on demographic and ancillary variables relating to contextual factors in the physical environment (risk perception of physical and personal vulnerability to disaster) and the social environment (through the construct of self-determination), and other measures of disaster preparedness. These data are reserved for future analyses. Results of correlational and regression analyses for the primary study variables show that Wellingtonians are highly individualistic in how their well-being influences their preparedness, and a majority are taking inadequate action to build their resilience to future disaster from earthquake- or tsunami-triggered evacuation. At a population level, the conceptual multi-dimensional model of health-related quality of life and global well-being tested in this study shows a positive association with evacuation preparedness at statistically significant levels. However, it must be emphasised that the strength of this relationship is weak, accounting for only 5-7% of the variability in evacuation preparedness. No single dimension of health-related quality of life or well-being stands out as a strong predictor of preparedness. The strongest associations for preparedness are in a positive direction for spiritual well-being, emotional well-being, and life satisfaction; all involve a sense of existential meaningfulness. Spiritual well-being is the only quality of life variable making a statistically significant unique contribution to explaining the variance observed in the regression models. Physical health status is weakly associated with preparedness in a negative direction at a continuous level of measurement. No association was found at statistically significant levels for mental health status and social well-being. These findings indicate that engaging in evacuation preparedness is a very complex, holistic, yet individualised decision-making process, and likely involves highly subjective considerations for what is personally relevant. Gender is not a factor. Those 18-24 years of age are least likely to prepare and evacuation preparedness increases with age. Multidimensional health and global well-being are important constructs to consider in disaster resilience for both pre-event and post-event timeframes. This work indicates a need for promoting self-management of risk and building resilience by incorporating a sense of personal meaning and importance into preparedness actions, and for future research into further understanding preparedness motivations.
In 2010 and 2011 Christchurch, New Zealand experienced a series of earthquakes that caused extensive damage across the city, but primarily to the Central Business District (CBD) and eastern suburbs. A major feature of the observed damage was extensive and severe soil liquefaction and associated ground damage, affecting buildings and infrastructure. The behaviour of soil during earthquake loading is a complex phenomena that can be most comprehensively analysed through advanced numerical simulations to aid engineers in the design of important buildings and critical facilities. These numerical simulations are highly dependent on the capabilities of the constitutive soil model to replicate the salient features of sand behaviour during cyclic loading, including liquefaction and cyclic mobility, such as the Stress-Density model. For robust analyses advanced soil models require extensive testing to derive engineering parameters under varying loading conditions for calibration. Prior to this research project little testing on Christchurch sands had been completed, and none from natural samples containing important features such as fabric and structure of the sand that may be influenced by the unique stress-history of the deposit. This research programme is focussed on the characterisation of Christchurch sands, as typically found in the CBD, to facilitate advanced soil modelling in both res earch and engineering practice - to simulate earthquake loading on proposed foundation design solutions including expensive ground improvement treatments. This has involved the use of a new Gel Push (GP) sampler to obtain undisturbed samples from below the ground-water table. Due to the variable nature of fluvial deposition, samples with a wide range of soil gradations, and accordingly soil index properties, were obtained from the sampling sites. The quality of the samples is comprehensively examined using available data from the ground investigation and laboratory testing. A meta-quality assessment was considered whereby a each method of evaluation contributed to the final quality index assigned to the specimen. The sampling sites were characterised with available geotechnical field-based test data, primarily the Cone Penetrometer Test (CPT), supported by borehole sampling and shear-wave velocity testing. This characterisation provides a geo- logical context to the sampling sites and samples obtained for element testing. It also facilitated the evaluation of sample quality. The sampling sites were evaluated for liquefaction hazard using the industry standard empirical procedures, and showed good correlation to observations made following the 22 February 2011 earthquake. However, the empirical method over-predicted liquefaction occurrence during the preceding 4 September 2010 event, and under-predicted for the subsequent 13 June 2011 event. The reasons for these discrepancies are discussed. The response of the GP samples to monotonic and cyclic loading was measured in the laboratory through triaxial testing at the University of Canterbury geomechanics laboratory. The undisturbed samples were compared to reconstituted specimens formed in the lab in an attempt to quantify the effect of fabric and structure in the Christchurch sands. Further testing of moist tamped re- constituted specimens (MT) was conducted to define important state parameters and state-dependent properties including the Critical State Line (CSL), and the stress-strain curve for varying state index. To account for the wide-ranging soil gradations, selected representative specimens were used to define four distinct CSL. The input parameters for the Stress-Density Model (S-D) were derived from a suite of tests performed on each representative soil, and with reference to available GP sample data. The results of testing were scrutinised by comparing the data against expected trends. The influence of fabric and structure of the GP samples was observed to result in similar cyclic strength curves at 5 % Double Amplitude (DA) strain criteria, however on close inspection of the test data, clear differences emerged. The natural samples exhibited higher compressibility during initial loading cycles, but thereafter typically exhibited steady growth of plastic strain and excess pore water pressure towards and beyond the strain criteria and initial liquefaction, and no flow was observed. By contrast the reconstituted specimens exhibited a stiffer response during initial loading cycles, but exponential growth in strains and associated excess pore water pressure beyond phase-transformation, and particularly after initial liquefaction where large strains were mobilised in subsequent cycles. These behavioural differences were not well characterised by the cyclic strength curve at 5 % DA strain level, which showed a similar strength for both GP samples and MT specimens. A preliminary calibration of the S-D model for a range of soil gradations is derived from the suite of laboratory test data. Issues encountered include the influence of natural structure on the peak-strength–state index relationship, resulting in much higher peak strengths than typically observed for sands in the literature. For the S-D model this resulted in excessive stiffness to be modelled during cyclic mobility, when the state index becomes large momentarily, causing strain development to halt. This behaviour prevented modelling the observed re- sponse of silty sands to large strains, synonymous with “liquefaction”. Efforts to reduce this effect within the current formulation are proposed as well as future research to address this issue.
Geographically isolated communities around the world are dependent upon the limited assets in local subsistence economies to generate livelihoods. Locally available resources shape and give identity to unique cultural activities that guarantee individual, family and community livelihood sustainability. The social structure provides community relationship networks, which ensure access to, and availability of, resources over long periods. Resources are utilised in ways that reduces vulnerability, stresses and shocks while ensuring long-term resilience. Preparedness and adaptation are embedded into cultural memory, enabling communities to survive in isolated, remote and harsh conditions. Communities’ cultural memories, storytelling, traditional knowledge, interdependence and unwritten cultural norms that build resilience to sustain cultures that have limited interactions with the outside world.
This thesis aims to investigate the consequences of transport infrastructure development, mainly of roads, on livelihood strategies of isolated communities in a tourism context in Gilgit-Baltistan, Pakistan. The thesis incorporates a review of literature of transport infrastructure development and livelihood security in reference to vulnerability, resilience and sustainability. Research gaps are identified in terms of transport infrastructure development and tourism, the Sustainable Livelihood Approach, resilience and sustainability. The fieldwork was undertaken using qualitative research methods. Ninety-eight participants were interviewed using open-ended semi-structured interview questions to get an in-depth understanding of livelihood systems, livelihood activities and transport infrastructure development within the tourism context.
Gilgit-Baltistan is a disputed mountainous territory in the Asia Subcontinent whose ancient trade routes (silk routes) were severed during the geopolitical upheaval of the partition of the Indian Subcontinent in 1947. An alliance between Pakistan and China resulted in transport infrastructure development of the Karakorum Highway between 1958 and 1978, providing the only road access to the regions isolated communities. Karakoram Highway connects China with Pakistan through Gilgit-Baltistan. Gilgit-Baltistan is going through immense transport infrastructure development, including the China Pakistan Economic Corridor. The road infrastructure is expected to link China and other South Asian and Central Asian countries to the world and provide a direct link for Chinese goods to reach the Persian Gulf. China Pakistan Economic Corridor is part of China’s Belt and Road Initiative project, which aims to improve connectivity and cooperation between 69 Eurasian countries by investing in infrastructure development. Such an immense infrastructural development is expected to enhance the mobility of people, goods and services.
In order to understand the impacts of transport infrastructure development, this thesis has analysed livelihood capital status at macro, and micro levels are examined over two time periods (pre-road and post-road). Results show that sustainable farming practices provided long-term resilience to these geographically isolated communities. Transport infrastructure development has been a significant factor to ensure access and has resulted in changes to social inclusion, socio-political structures and livelihood opportunities with a subsequent dependence upon tourism, imported consumer goods and a monetary economy as people divert valuable farmland to building developments and cash crop monocultures. Gilgit-Baltistan is vulnerable to frequent manmade and natural disasters, such as terrorism, earthquakes and landslides. Shocks impact upon the livelihoods of those affiliated with tourism who are forced to revert to subsistence farming practices and alternative livelihood choices. The dependency on external resources and subsequent loss of the cultural memory and farming techniques has created a vulnerability to the unpredictable shocks and disasters that frequently close the singular access road.
The thesis finally presents the ‘Livelihood Framework for Transport Infrastructure Development and Tourism (LF-TIDT)’ a guiding tool to understand the impacts of transport infrastructure development at micro and macro levels for tourism planning, policy formulation and implementation and management. Attention is drawn to the newly introduced ‘Location: a Meta Capital’ and its importance in terms of geographically isolated communities. The research also highlights that livelihood capitals are not equally essential to achieve sustainable and resilient livelihood outcomes.
Wellington is located on a fault line which will inevitably, one day be impacted by a big earthquake. Due to where this fault line geographically sits, the central city and southern suburbs may be cut off from the rest of the region, effectively making these areas an ‘island’. This issue has absorbed a lot of attention, in particular at a large scale by many different fields: civil engineering, architecture, infrastructure planning & design, policymaking. Due to heightened awareness, and evolved school of practice, contemporary landscape architects deal with post-disaster design – Christchurch, NZ has seen this. A number of landscape architects work with nature, following increased application of ecological urbanism, and natural systems thinking, most notably at larger scales. To create parks that are designed to flood, or implement projects to protect shorelines. A form of resilience less often considered is how design for the small scale - people’s 1:1 relationship with their immediate context in exterior space - can be influential in forming a resilient response to the catastrophe of a major earthquake. This thesis intends to provide a response to address the shift of scales, as a paradigm for preparation and recovery. After a large-scale earthquake, state and civic policies and agencies may or subsequentially not go into action. The most important thinking and acting will be what happens in the minds, and the immediate needs, of each and every person; and how they act communally. This is considered in general social terms in state and civic education programmes of civil defence, for example, but much less considered in how the physical design of the actual spaces we inhabit day-to-day can educate us to be mentally prepared to help each other survive a catastrophe. Specifically, the identification of design of typologies can provide these educative functions. Typology inherently a physical form or manipulation of a generic and substantial prototype applicable in contexts is something that exists in the mind. Working with the physical and social appearance and experience of typologies can also/will change people’s minds. Socially, and economically driven, the community-building power of community gardening is well-proven and documented, and a noticeably large part of contemporary landscape architecture. The designs of this thesis will focus on community gardening specifically to form typologies of resilience preparation and response to disaster. The foundation will remain at the small scale of the local community. The specific question this thesis poses: Can we design local typologies in landscape architecture to integrate community gardens, with public space by preparing for and acting as recovery from a disaster?
The Acheron rock avalanche is located in the Red Hill valley almost 80 km west of Christchurch and is one of 42 greywacke-derived rock avalanches identified in the central Southern Alps. It overlies the Holocene active Porters Pass Fault; a component of the Porters Pass-Amberley Fault Zone which extends from the Rakaia River to beyond the Waimakariri River. The Porters Pass Fault is a dextral strike-slip fault system viewed as a series of discontinuous fault scarps. The location of the fault trace beneath the deposit suggests it may represent a possible source of seismic shaking resulting in the formation of the Acheron rock avalanche. The rock mass composition of the rock avalanche source scar is Torlesse Supergroup greywacke consisting of massive sandstone and thinly bedded mudstone sequences dipping steeply north into the centre of the source basin. A stability analysis identified potential instability along shallow north dipping planar defects, and steep south dipping toppling failure planes. The interaction of the defects with bedding is considered to have formed conditions for potential instability most likely triggered by a seismic event. The dTositional area of the rock avalanche covers 7.2 x 105 m2 with an estimated volume of 9 x 10 m3 The mobilised rock mass volume was calculated at 7.5 x 106 m3• Run out of the debris from the top of the source scar to the distal limit reached 3500m, descending over a vertical fall of almost 700m with an estimated Fahrboschung of 0.2. The run out of the rock avalanche displayed moderate to high mobility, travelling at an estimated maximum velocity of 140-160 km/hour. The rapid emplacement of the deposit is confirmed by highly fragmented internal composition and burial of forest vegetation New radiocarbon ages from buried wood retrieved from the base of Acheron rock avalanche deposit represents an emplacement age closely post-dating (Wk 12094) 1152 ± 51 years B.P. This differs significantly from a previous radiocarbon age of (NZ547) 500 ± 69 years B.P. and modal lichenometry and weathering-rind thickness ages of approximately 460 ± 10 yrs and 490 ± 50 years B.P. The new age shows no resemblance to an earthquake event around 700- 500 years B.P. on the Porters Pass-Amberley Fault Zone. The DAN run out simulation using a friction model rheology successfully replicated the long run out and velocity of the Acheron rock avalanche using a frictron angle of 27° and high earth pressure coefficients of 5.5, 5.2, and 5.9. The elevated earth pressure coefficients represent dispersive pressures derived from dynamic fragmentation of the debris within the mobile rock avalanche, supporting the hypothesis of Davies and McSaveney (2002). The DAN model has potential applications for areas prone to large-scale instability in the elevated slopes and steep waterways of the Southern Alps. A paleoseismic investigation of a newly identified scarp of the Porters Pass Fault partially buried by the rock avalanche was conducted to identify any evidence of a coseismic relationship to the Acheron rock avalanche. This identified three-four fault traces striking at 078°, and a sag pond displaying a sequence of overbank deposits containing two buried soils representing an earthquake event horizon. A 40cm vertical offset of the ponded sediment and lower buried soil horizqn was recorded, which was dated to (Wk 13112 charcoal in palosol) 653 ± 54 years B.P. and (Wk 13034 palosol) 661 ± 34 years B.P. The evidence indicates a fault rupture occurred along the Porters Pass Fault, west of Porters Pass most likely extending to the Red Lakes terraces, post-dating 700 years B.P., resulting in 40cm of vertical displacement and an unknown component of dextral strike slip movement. This event post dates the event one (1000 ± 100 years B.P) at Porters Pass previously considered to represent the most recent rupture along the fault line. This points to a probable source for resetting of the modal weathering-rind thicknesses and lichen size populations in the Red Hill valley and possibly the Red Lakes terraces. These results suggest careful consideration must be given to the geomorphic and paleoseismic history of a specific site when applying surface dating techniques and furthermore the origin of dates used in literature and their useful range should be verified. An event at 700-500 years B.P did not trigger the Acheron rock avalanche as previously assumed supporting Howard's conclusions. The lack of similar aged rupture evidence in either of the Porters Pass and Coleridge trenches supports Howard's hypothesis of segmentation of the Porters Pass Fault; where rupture occurs along one fault segment but not along another. The new rock avalanche age closely post-dating 1200-1100 years B.P. resembles the poorly constrained event one rupture age of 1700-800 years B.P for the Porters Pass Fault and the tighter constrained Round Top event of 1010 ± 50 years B.P. on the Alpine Fault. Eight other rock avalanche deposits spread across the central Southern Alps also resemble the new ages however are unable to be assigned specific earthquake events due to the large associated error bars of± 270 years. This clustering of ages does represent compelling lines of evidence for large magnitude earthquake events occurring over the central Southern Alps. The presence of a rock avalanche deposit does not signify an earthquake based on the historical evidence in the Southern Alps however clustering of ages does suggest that large Mw >7 earthquakes occurred across the Southern Alps between 1200-900 years BP.
In this thesis, focus is given to develop methodologies for rapidly estimating specific components of loss and downtime functions. The thesis proposes methodologies for deriving loss functions by (i) considering individual component performance; (ii) grouping them as per their performance characteristics; and (iii) applying them to similar building usage categories. The degree of variation in building stock and understanding their characteristics are important factors to be considered in the loss estimation methodology and the field surveys carried out to collect data add value to the study. To facilitate developing ‘downtime’ functions, this study investigates two key components of downtime: (i) time delay from post-event damage assessment of properties; and (ii) time delay in settling the insurance claims lodged. In these two areas, this research enables understanding of critical factors that influence certain aspects of downtime and suggests approaches to quantify those factors. By scrutinising the residential damage insurance claims data provided by the Earthquake Commission (EQC) for the 2010- 2011 Canterbury Earthquake Sequence (CES), this work provides insights into various processes of claims settlement, the time taken to complete them and the EQC loss contributions to building stock in Christchurch city and Canterbury region. The study has shown diligence in investigating the EQC insurance claim data obtained from the CES to get new insights and build confidence in the models developed and the results generated. The first stage of this research develops contribution functions (probabilistic relationships between the expected losses for a wide range of building components and the building’s maximum response) for common types of claddings used in New Zealand buildings combining the probabilistic density functions (developed using the quantity of claddings measured from Christchurch buildings), fragility functions (obtained from the published literature) and cost functions (developed based on inputs from builders) through Monte Carlo simulations. From the developed contribution functions, glazing, masonry veneer, monolithic and precast concrete cladding systems are found to incur 50% loss at inter-storey drift levels equal to 0.027, 0.003, 0.005 and 0.011, respectively. Further, the maximum expected cladding loss for glazing, masonry veneer, monolithic, precast concrete cladding systems are found to be 368.2, 331.9, 365.0, and 136.2 NZD per square meter of floor area, respectively. In the second stage of this research, a detailed cost breakdown of typical buildings designed and built for different purposes is conducted. The contributions of structural and non- structural components to the total building cost are compared for buildings of different usages, and based on the similar ratios of non-structural performance group costs to the structural performance group cost, four-building groups are identified; (i) Structural components dominant group: outdoor sports, stadiums, parkings and long-span warehouses, (ii) non- structural drift-sensitive components dominant group: houses, single-storey suburban buildings (all usages), theatres/halls, workshops and clubhouses, (iii) non-structural acceleration- sensitive components dominant group: hospitals, research labs, museums and retail/cold stores, and (iv) apartments, hotels, offices, industrials, indoor sports, classrooms, devotionals and aquariums. By statistically analysing the cost breakdowns, performance group weighting factors are proposed for structural, and acceleration-sensitive and drift-sensitive non-structural components for all four building groups. Thus proposed building usage groupings and corresponding weighting factors facilitate rapid seismic loss estimation of any type of building given the EDPs at storey levels are known. A model for the quantification of post-earthquake inspection duration is developed in the third stage of this research. Herein, phase durations for the three assessment phases (one rapid impact and two rapid building) are computed using the number of buildings needing inspections, the number of engineers involved in inspections and a phase duration coefficient (which considers the median building inspection time, efficiency of engineer and the number of engineers involved in each assessment teams). The proposed model can be used: (i) by national/regional authorities to decide the length of the emergency period following a major earthquake, and estimate the number of engineers required to conduct a post-earthquake inspection within the desired emergency period, and (ii) to quantify the delay due to inspection for the downtime modelling framework. The final stage of this research investigates the repair costs and insurance claim settlement time for damaged residential buildings in the 2010-2011 Canterbury earthquake sequence. Based on the EQC claim settlement process, claims are categorized into three groups; (i) Small Claims: claims less than NZD15,000 which were settled through cash payment, (ii) Medium Claims: claims less than NZD100,000 which were managed through Canterbury Home Repair Programme (CHRP), and (iii) Large Claims: claims above NZD100,000 which were managed by an insurance provider. The regional loss ratio (RLR) for greater Christchurch for three events inducing shakings of approximate seismic intensities 6, 7, and 8 are found to be 0.013, 0.066, and 0.171, respectively. Furthermore, the claim duration (time between an event and the claim lodgement date), assessment duration (time between the claim lodgement day and the most recent assessment day), and repair duration (time between the most recent assessment day and the repair completion day) for the insured residential buildings in the region affected by the Canterbury earthquake sequence is found to be in the range of 0.5-4 weeks, 1.5- 5 months, and 1-3 years, respectively. The results of this phase will provide useful information to earthquake engineering researchers working on seismic risk/loss and insurance modelling.
Christchurch was struck by a 6.3 magnitude earthquake on the 22 February 2011. The quake devastated the city, taking lives and causing widespread damage to the inner city and suburban homes. The central city lost over half its buildings and over 7000 homes were condemned throughout Christchurch. The loss of such a great number of homes has created the requirement for new housing to replace those that were lost. Many of which were located in the eastern, less affluent, suburbs. The response to the housing shortage is the planned creation of large scale subdivisions on the outskirts of the city. Whilst this provides the required housing it creates additional sprawl to a city that does not need it. The extension of Christchurch’s existing suburban sprawl puts pressure on roading and pushes residents further out of the city, creating a disconnection between them. Christchurch’s central city had a very small residential population prior to the earthquakes with very few options for dense inner city living. The proposed rebuild of the inner city calls for a new ‘dense, vibrant and diverse central hub’. Proposing the introduction of new residential units within the central city. However the placement of the low-rise housing in a key attribute of the rebuild, the eastern green ‘Frame’, diminishes its value as open green space. The proposed housing will also be restrictive in its target market and therefore the idea of a ‘vibrant’ inner city is difficult to achieve. This thesis acts as response to the planned rebuild of inner Christchurch. Proposing the creation of a model for inner city housing which provides an alternative option to the proposed housing and existing and ongoing suburban sprawl. The design options were explored through a design-led process were the options were critiqued and developed. The ‘final’ proposal is comprises of three tall towers, aptly named the Triple Towers, which condense the proposed low-rise housing from an 11000 square metre footprint to combined footprint of 1500 square metres. The result is an expansion of the publicly available green space along the proposed eastern frame of the city. The height of the project challenges the height restrictions and is provocative in its proposal and placement. The design explores the relationships between the occupants, the building, the ‘Frame’ and the central city. The project is discussed through an exploration of the architecture of Rem Koolhaas, Renzo Piano and Oscar Niemeyer. Rather than their architecture being taken as a direct influence on which the design is based the discussion revolves around how and why each piece of comparative architecture is relevant to the designs desired outcome.
Globally, the maximum elevations at which treelines are observed to occur coincide with a 6.4 °C soil isotherm. However, when observed at finer scales, treelines display a considerable degree of spatial complexity in their patterns across the landscape and are often found occurring at lower elevations than expected relative to the global-scale pattern. There is still a
lack of understanding of how the abiotic environment imposes constraints on treeline patterns, the scales at which different effects are acting, and how these effects vary over large spatial extents. In this thesis, I examined abrupt Nothofagus treelines across seven degrees of
latitude in New Zealand in order to investigate two broad questions: (1) What is the nature and extent of spatial variability in Nothofagus treelines across the country? (2) How is this variation associated with abiotic variation at different spatial scales? A range of GIS, statistical, and atmospheric modelling methods were applied to address these two questions.
First, I characterised Nothofagus treeline patterns at a 15x15km scale across New Zealand using a set of seven, GIS-derived, quantitative metrics that describe different aspects of treeline position, shape, spatial configuration, and relationships with adjacent vegetation.
Multivariate clustering of these metrics revealed distinct treeline types that showed strong spatial aggregation across the country. This suggests a strong spatial structuring of the abiotic environment which, in turn, drives treeline patterns. About half of the multivariate treeline
metric variation was explained by patterns of climate, substrate, topographic and disturbance variability; on the whole, climatic and disturbance factors were most influential.
Second, I developed a conceptual model that describes how treeline elevation may
vary at different scales according to three categories of effects: thermal modifying effects, physiological stressors, and disturbance effects. I tested the relevance of this model for Nothofagus treelines by investigating treeline elevation variation at five nested scales (regional to local) using a hierarchical design based on nested river catchments. Hierarchical linear modelling revealed that the majority of the variation in treeline elevation resided at the broadest, regional scale, which was best explained by the thermal modifying effects of solar radiation, mountain mass, and differences in the potential for cold air ponding. Nonetheless, at finer scales, physiological and disturbance effects were important and acted to modify the regional trend at these scales. These results suggest that variation in abrupt treeline elevations
are due to both broad-scale temperature-based growth limitation processes and finer-scale stress- and disturbance-related effects on seedling establishment.
Third, I explored the applicability of a meso-scale atmospheric model, The Air
Pollution Model (TAPM), for generating 200 m resolution, hourly topoclimatic data for
temperature, incoming and outgoing radiation, relative humidity, and wind speeds. Initial assessments of TAPM outputs against data from two climate station locations over seven years showed that the model could generate predictions with a consistent level of accuracy for both sites, and which agreed with other evaluations in the literature. TAPM was then used to generate data at 28, 7x7 km Nothofagus treeline zones across New Zealand for January
(summer) and July (winter) 2002. Using mixed-effects linear models, I determined that both
site-level factors (mean growing season temperature, mountain mass, precipitation,
earthquake intensity) and local-level landform (slope and convexity) and topoclimatic factors (solar radiation, photoinhibition index, frost index, desiccation index) were influential in
explaining variation in treeline elevation within and among these sites. Treelines were
generally closer to their site-level maxima in regions with higher mean growing season
temperatures, larger mountains, and lower levels of precipitation. Within sites, higher
treelines were associated with higher solar radiation, and lower photoinhibition and
desiccation index values, in January, and lower desiccation index values in July. Higher treelines were also significantly associated with steeper, more convex landforms.
Overall, this thesis shows that investigating treelines across extensive areas at multiple study scales enables the development of a more comprehensive understanding of treeline variability and underlying environmental constraints. These results can be used to formulate new hypotheses regarding the mechanisms driving treeline formation and to guide the optimal choice of field sites at which to test these hypotheses.
In September 2010 and February 2011 the Canterbury region of New Zealand was struck by two powerful earthquakes, registering magnitude 7.1 and 6.3 respectively on the Richter scale. The second earthquake was centred 10 kilometres south-east of the centre of Christchurch (the region’s capital and New Zealand’s third most populous urban area, with approximately 360,000 residents) at a depth of five kilometres. 185 people were killed, making it the second deadliest natural disaster in New Zealand’s history. (66 people were killed in the collapse of one building alone, the six-storey Canterbury Television building.) The earthquake occurred during the lunch hour, increasing the number of people killed on footpaths and in buses and cars by falling debris. In addition to the loss of life, the earthquake caused catastrophic damage to both land and buildings in Christchurch, particularly in the central business district. Many commercial and residential buildings collapsed in the tremors; others were damaged through soil liquefaction and surface flooding. Over 1,000 buildings in the central business district were eventually demolished because of safety concerns, and an estimated 70,000 people had to leave the city after the earthquakes because their homes were uninhabitable. The New Zealand Government declared a state of national emergency, which stayed in force for ten weeks. In 2014 the Government estimated that the rebuild process would cost NZ$40 billion (approximately US$27.3 billion, a cost equivalent to 17% of New Zealand’s annual GDP). Economists now estimate it could take the New Zealand economy between 50 and 100 years to recover. The earthquakes generated tens of thousands of insurance claims, both against private home insurance companies and against the New Zealand Earthquake Commission, a government-owned statutory body which provides primary natural disaster insurance to residential property owners in New Zealand. These ranged from claims for hundreds of millions of dollars concerning the local port and university to much smaller claims in respect of the thousands of residential homes damaged. Many of these insurance claims resulted in civil proceedings, caused by disputes about policy cover, the extent of the damage and the cost and/or methodology of repairs, as well as failures in communication and delays caused by the overwhelming number of claims. Disputes were complicated by the fact that the Earthquake Commission provides primary insurance cover up to a monetary cap, with any additional costs to be met by the property owner’s private insurer. Litigation funders and non-lawyer claims advocates who took a percentage of any insurance proceeds also soon became involved. These two factors increased the number of parties involved in any given claim and introduced further obstacles to resolution. Resolving these disputes both efficiently and fairly was (and remains) central to the rebuild process. This created an unprecedented challenge for the justice system in Christchurch (and New Zealand), exacerbated by the fact that the Christchurch High Court building was itself damaged in the earthquakes, with the Court having to relocate to temporary premises. (The High Court hears civil claims exceeding NZ$200,000 in value (approximately US$140,000) or those involving particularly complex issues. Most of the claims fell into this category.) This paper will examine the response of the Christchurch High Court to this extraordinary situation as a case study in innovative judging practices and from a jurisprudential perspective. In 2011, following the earthquakes, the High Court made a commitment that earthquake-related civil claims would be dealt with as swiftly as the Court's resources permitted. In May 2012, it commenced a special “Earthquake List” to manage these cases. The list (which is ongoing) seeks to streamline the trial process, resolve quickly claims with precedent value or involving acute personal hardship or large numbers of people, facilitate settlement and generally work proactively and innovatively with local lawyers, technical experts and other stakeholders. For example, the Court maintains a public list (in spreadsheet format, available online) with details of all active cases before the Court, listing the parties and their lawyers, summarising the facts and identifying the legal issues raised. It identifies cases in which issues of general importance have been or will be decided, with the expressed purpose being to assist earthquake litigants and those contemplating litigation and to facilitate communication among parties and lawyers. This paper will posit the Earthquake List as an attempt to implement innovative judging techniques to provide efficient yet just legal processes, and which can be examined from a variety of jurisprudential perspectives. One of these is as a case study in the well-established debate about the dialogic relationship between public decisions and private settlement in the rule of law. Drawing on the work of scholars such as Hazel Genn, Owen Fiss, David Luban, Carrie Menkel-Meadow and Judith Resnik, it will explore the tension between the need to develop the law through the doctrine of precedent and the need to resolve civil disputes fairly, affordably and expeditiously. It will also be informed by the presenter’s personal experience of the interplay between reported decisions and private settlement in post-earthquake Christchurch through her work mediating insurance disputes. From a methodological perspective, this research project itself gives rise to issues suitable for discussion at the Law and Society Annual Meeting. These include the challenges in empirical study of judges, working with data collected by the courts and statistical analysis of the legal process in reference to settlement. September 2015 marked the five-year anniversary of the first Christchurch earthquake. There remains widespread dissatisfaction amongst Christchurch residents with the ongoing delays in resolving claims, particularly insurers, and the rebuild process. There will continue to be challenges in Christchurch for years to come, both from as-yet unresolved claims but also because of the possibility of a new wave of claims arising from poor quality repairs. Thus, a final purpose of presenting this paper at the 2016 Meeting is to gain the benefit of other scholarly perspectives and experiences of innovative judging best practice, with a view to strengthening and improving the judicial processes in Christchurch. This Annual Meeting of the Law and Society Association in New Orleans is a particularly appropriate forum for this paper, given the recent ten year anniversary of Hurricane Katrina and the plenary session theme of “Natural and Unnatural Disasters – human crises and law’s response.” The presenter has a personal connection with this theme, as she was a Fulbright scholar from New Zealand at New York University in 2005/2006 and participated in the student volunteer cleanup effort in New Orleans following Katrina. http://www.lawandsociety.org/NewOrleans2016/docs/2016_Program.pdf
The assessment of damage and remaining capacity after an earthquake is an immediate measure to determine whether a reinforced concrete (RC) building is usable and safe for occupants. The recent Christchurch earthquake (22 February 2011) caused a uniquely severe level of structural damage to modern buildings, resulting in extensive damage to the building stock. About 60% of damaged multistorey concrete buildings (3 storeys and up) were demolished after the earthquake, and the cost of reconstruction amounted to 40 billion NZD. The aftermath disclosed issues of great complexities regarding the future of the RC buildings damaged by the earthquakes. This highlighted the importance of post-event decision-making, as the outcome will allow the appropriate course of action—demolition, repair or acceptance of the existing building—to be considered. To adopt the proper strategy, accurate assessment of the residual capacity and the level of damage is required. This doctoral dissertation aims to assess the damage and remaining capacity at constituent material and member level (i.e., concrete material and beams) through a systematic approach in an attempt to address part of an existing gap in the available literature. Since the residual capacity of RC members is not unique and depends on previously applied loading history, post-event residual capacity in this study was assessed in terms of fraction of fatigue life (i.e., the number of cycles required to failure). This research comprises three main parts: (1) residual capacity and damage assessment at material level (i.e., concrete), (2) post-yield bond deterioration and damage assessment at the interface of steel and concrete, and, finally, (3) residual capacity and damage assessment at member level (i.e., RC beam). The first part of this research focused on damage assessment and the remaining capacity of concrete from a material point of view. It aimed to employ appropriate and reliable durability-based testing and image-detection techniques to quantify deterioration in the mechanical properties of concrete on the basis that stress-induced damage occurred in the microstructural system of the concrete material. To this end, in the first phase, a feasibility study was conducted in which a combination of oxygen permeability, electrical resistivity and porosity tests were assessed to determine if they were robust and reliable enough to reveal damage which occurred in the microstructural system of concrete. The results, in terms of change in permeability, electrical resistivity and porosity features of disk samples taken from the middle third of damaged concrete cylinders (200 mm × 100 mm) monotonically pre-loaded to 50%, 70%, 90% and 95% of the ultimate strength (f′c), showed the permeability test is a reliable tool to identify the degree of damage, due to its high sensitivity to the load-induced microcracking. In parallel, to determine the residual capacity, the companion damaged concrete cylinders already loaded to the same level of compressive strength were reloaded up to failure. Comparing the stress–strain relationship of damaged concrete with intact material, it was also found that the strain capacity of the reloaded pre-damaged concrete cylinders decreases while strength remained virtually unchanged. In the second phase of the first part, a fluorescent microscopy technique was used to assess the damage and develop a correlation between material degradation, by virtue of the geometrical features, and damage to the concrete. To account for the effect of confinement and cyclic loading, in the third phase, the residual capacity and damage assessment of unconfined and GFRP confined concrete cylinders subjected to low-cycle fatigue loading, was investigated. Similar to the first phase, permeability testing technique was used to provide an indirect evaluation of fatigue damage. Finally, in the fourth phase of the first part, the suitability of permeability testing technique to assess damage was evaluated for cored concrete taken from three types of RC members: columns, beams and a beam-column joint. In view of the fact that the composite action of an RC member is highly dependent on the bond between reinforcement and surrounding concrete, understanding the deterioration of the bond in the post-yield range of strain in steel was crucial to assess damage at member level. Therefore, in the second phase of this research, a state-of-the- art distributed fibre optic strain sensor system (DFOSSS) system was used to evaluate bond deterioration in a cantilever RC beam subjected to monotonic lateral loading. The technology allowed the continuous capture of strain, every 2.6 mm along the length, in both reinforcing bars and cover concrete. The strain profile provided a basis by which the slip, axial stress and bond stress distributions were then established. In the third part, the study focused on the damage assessment and residual capacity of seven half-scale RC beams subjected to a constant-amplitude cyclic loading protocol. In the first stage, the structural performances of three specimens under constant-amplitude fatigue at 1%, 2% and 4% chord rotation (drift) were examined. In parallel, the number of cycles to failure, degradation in strength, stiffness and energy dissipation were characterized. In the second stage, four RC beams were subjected to loading up to 70% and 90% of their fatigue life, at 2% and 4% drift, and then monotonically pulled up to failure. To determine the residual flexural capacity, the lateral force–displacement results of pre-damaged specimens were compared with an undamaged specimen subjected to only monotonic loading. The study showed significant losses in strength, deformability, stiffness and energy dissipation capacity. A nonlinear finite element analysis (FEA) using concrete damage plasticity (CDP) model was also conducted in ABAQUS to numerically investigate the behaviour of the tested specimen. The results of the FE simulations indicated a reasonable response compared with the behaviour of the test specimen in terms of force–displacement and cracking pattern. During the Christchurch earthquake it was observed that the loading history has a significant influence on structural responses. While in conventional pseudo-static loading protocol, internal forces can be redistributed along the plastic length: there is little chance for structures undergoing high initial loading amplitude to redistribute pertinent stresses. As a result, in the third phase of this part, the effect of high rate of loading on the behaviour of seismically designed RC beams was investigated. Two half-scale cantilever RC beams were subjected to similar constant-amplitude cyclic loading at 2% and 4% drifts, but at a rate of 500 mm/s. Due to the incapability of conventional measuring techniques, a motion-tracking system was employed for data acquisition with the high-speed tests. The effect of rate of loading on the fatigue life of specimens (i.e., the number of cycles required to failure), secant stiffness, failure mode, cracking pattern, beam elongations and bar fracture surface were analysed. Integrating the results of all parts of this research has resulted in a better understanding of residual capacity and the development of damage at both the material and member level by using a low-cycle fatigue approach.
Non-structural elements (NSEs) have frequently proven to contribute to significant losses sustained from earthquakes in the form of damage, downtime, injury and death. In New Zealand (NZ), the 2010 and 2011 Canterbury Earthquake Sequence (CES), the 2013 Seddon and Cook Strait earthquake sequence and the 2016 Kaikoura earthquake were major milestones in this regard as significant damage to building NSEs both highlighted and further reinforced the importance of NSE seismic performance to the resilience of urban centres. Extensive damage in suspended ceilings, partition walls, façades and building services following the CES was reported to be partly due to erroneous seismic design or installation or caused by intervening elements. Moreover, the low-damage solutions developed for structural systems sometimes allow for relatively large inter-story drifts -compared to conventional designs- which may not have been considered in the seismic design of NSEs. Having observed these shortcomings, this study on suspended ceilings was carried out with five main goals: i) Understanding the seismic performance of the system commonly used in NZ; ii) Understanding the transfer of seismic design actions through different suspended ceiling components, iii) Investigating potential low-damage solutions; iii) Evaluating the compatibility of the current ceiling system with other low-damage NSEs; and iv) Investigating the application of numerical analysis to simulate the response of ceiling systems. The first phase of the study followed a joint research work between the University of Canterbury (UC) in NZ, and the Politecnico Di Milano, in Italy. The experimental ceiling component fragility curves obtained in this existing study were employed to produce analytical fragility curves for a perimeter-fixed ceiling of a given size and weight, with grid acceleration as the intensity measure. The validity of the method was proven through comparisons between this proposed analytical approach with the recommended procedures in proprietary products design guidelines, as well as experimental fragility curves from other studies. For application to engineering design practice, and using fragility curves for a range of ceiling lengths and weights, design curves were produced for estimating the allowable grid lengths for a given demand level. In the second phase of this study, three specimens of perimeter-fixed ceilings were tested on a shake table under both sinusoidal and random floor motion input. The experiments considered the relationship between the floor acceleration, acceleration of the ceiling grid, the axial force induced in the grid members, and the effect of boundary conditions on the transfer of these axial forces. A direct correlation was observed between the axial force (recorded via load cells) and the horizontal acceleration measured on the ceiling grid. Moreover, the amplification of floor acceleration, as transferred through ceiling components, was examined and found (in several tests) to be greater than the recommended factor for the design of ceilings provided in the NZ earthquake loadings standard NZS1170.5. However, this amplification was found to be influenced by the pounding interactions between the ceiling grid members and the tiles, and this amplification diminished considerably when the high frequency content was filtered out from the output time histories. The experiments ended with damage in the ceiling grid connection at an axial force similar to the capacity of these joints previously measured through static tests in phase one. The observation of common forms of damage in ceilings in earthquakes triggered the monotonic experiments carried out in the third phase of this research with the objective of investigating a simple and easily applicable mitigation strategy for existing or new suspended ceilings. The tests focused on the possibility of using proprietary cross-shaped clip elements ordinarily used to provide seismic gap as a strengthening solution for the weak components of a ceiling. The results showed that the solution was effective under both tension and compression loads through increasing load bearing capacity and ductility in grid connections. The feasibility of a novel type of suspended ceiling called fully-floating ceiling system was investigated through shaking table tests in the next phase of this study with the main goal of isolating the ceiling from the surrounding structure; thereby arresting the transfer of associated seismic forces from the structure to the ceiling. The fully-floating ceiling specimen was freely hung from the floor above lacking any lateral bracing and connections with the perimeter. Throughout different tests, a satisfactory agreement between the fully-floating ceiling response and simple pendulum theory was demonstrated. The addition of isolation material in perimeter gaps was found effective in inducing extra damping and protecting the ceiling from pounding impact; resulting in much reduced ceiling displacements and accelerations. The only form of damage observed throughout the random floor motion tests and the sinusoidal tests was a panel dislodgement observed in a test due to successive poundings between the ceiling specimen and the surrounding beams at resonant frequencies. Partition walls as the first effective NSE in direct interaction with ceilings were the topic of the final experimental phase. Low-damage drywall partitions proposed in a previous study in the UC were tested with two common forms of suspended ceiling: braced and perimeter-fixed. The experiments investigated the in-plane and out-of-plane performance of the low-damage drywall partitions, as well as displacement compatibility between these walls and the suspended ceilings. In the braced ceiling experiment, where no connection was made between ceiling grids and surrounding walls no damage in the grid system or partitions was observed. However, at high drift values panel dislodgement was observed on corners of the ceiling where the free ends of grids were not restrained against spreading. This could be prevented by framing the grid ends using a perimeter angle that is riveted only to the grid members while keeping sufficient clearance from the perimeter walls. In the next set of tests with the perimeter-fixed ceiling, no damage was observed in the ceiling system or the drywalls. Based on the results of the experiments it was concluded that the tested ceiling had enough flexibility to accommodate the relative displacement between two perpendicular walls up to the inter-storey drifts achieved. The experiments on perimeter-fixed ceilings were followed by numerical simulations of the performance of these ceilings in a finite element model developed in the structural analysis software, SAP2000. This model was relatively simple and easy to develop and was able to replicate the experimental results to a reasonable degree. Filtering was applied to the experimental output to exclude the effect of high frequency noise and tile-grid impact. The developed model generally simulated the acceleration responses well but underestimated the peak ceiling grid accelerations. This was possibly because the peak values in time histories were affected by impact occurring at very short periods. The model overestimated the axial forces in ceiling grids which was assumed to be caused by the initial assumptions made about the tributary area or constant acceleration associated with each grid line in the direction of excitation. Otherwise, the overall success of the numerical modelling in replicating the experimental results implies that numerical modelling using conventional structural analysis software could be used in engineering practice to analyse alternative ceiling geometries proposed for application to varying structural systems. This however, needs to be confirmed through similar analyses on other ceiling examples from existing instrumented buildings during real earthquakes. As the concluding part of this research the final phase addressed the issues raised following the review of existing ceiling standards and guidelines. The applicability of the research findings to current practice and their implications were discussed. Finally, an example was provided for the design of a suspended ceiling utilising the new knowledge acquired in this research.
This report provides an initial overview and gap analysis of the multi-hazards interactions that might affect fluvial and pluvial flooding (FPF) hazard in the Ōpāwaho Heathcote catchment. As per the terms of reference, this report focuses on a one-way analysis of the potential effects of multi-hazards on FPF hazard, as opposed to a more complex multi-way analysis of interactions between all hazards. We examined the relationship between FPF hazard and hazards associated with the phenomena of tsunamis; coastal erosion; coastal inundation; groundwater; earthquakes; and mass movements. Tsunamis: Modelling research indicates the worst-case tsunami scenarios potentially affecting the Ōpāwaho Heathcote catchment are far field. Under low probability, high impact tsunami scenarios waves could travel into Pegasus Bay and the Avon-Heathcote Estuary Ihutai, reaching the mouth and lower reaches of the Heathcote catchment and river, potentially inundating and eroding shorelines in sub-catchments 1 to 5, and temporarily blocking fluvial drainage more extensively. Any flooding infrastructure or management actions implemented in the area of tsunami inundation would ideally be resilient to tsunami-induced inundation and erosion. Model results currently available are a first estimate of potential tsunami inundation under contemporary sea and land level conditions. In terms of future large tsunami events, these models likely underestimate effects in riverside sub-catchments, as well as effects under future sea level, shoreline and other conditions. Also of significance when considering different FPF management structures, it is important to be mindful that certain types of flood structures can ‘trap’ inundating water coming from ocean directions, leading to longer flood durations and salinization issues. Coastal erosion: Model predictions indicate that sub-catchments 1 to 3 could potentially be affected by coastal erosion by the timescale of 2065, with sub-catchments 1-6 predicted to be potentially affected by coastal erosion by the time scale of 2115. In addition, the predicted open coast effects of this hazard should not be ignored since any significant changes in the New Brighton Spit open coast would affect erosion rates and exposure of the landward estuary margins, including the shorelines of the Ōpāwaho Heathcote catchment. Any FPF flooding infrastructure or management activities planned for the potentially affected sub-catchments needs to recognise the possibility of coastal erosion, and to have a planned response to the predicted potential shoreline translation. Coastal inundation: Model predictions indicate coastal inundation hazards could potentially affect sub-catchments 1 to 8 by 2065, with a greater area and depth of inundation possible for these same sub-catchments by 2115. Low-lying areas of the Ōpāwaho Heathcote catchment and river channel that discharge into the estuary are highly vulnerable to coastal inundation since elevated ocean and estuary water levels can block the drainage of inland systems, compounding FPF hazards. Coastal inundation can overwhelm stormwater and other drainage network components, and render river dredging options ineffective at best, flood enhancing at worst. A distinction can be made between coastal inundation and coastal erosion in terms of the potential impacts on affected land and assets, including flood infrastructure, and the implications for acceptance, adaptation, mitigation, and/or modification options. That is, responding to inundation could include structural and/or building elevation solutions, since unlike erosion, inundation does not necessarily mean the loss of land. Groundwater: Groundwater levels are of significant but variable concern when examining flooding hazards and management options in the Ōpāwaho Heathcote catchment due to variability in soils, topographies, elevations and proximities to riverine and estuarine surface waterbodies. Much of the Canterbury Plains part of the Ōpāwaho Heathcote catchment has a water table that is at a median depth of <1m from the surface (with actual depth below surface varying seasonally, inter-annually and during extreme meteorological events), though the water table depth rapidly shifts to >6m below the surface in the upper Plains part of the catchment (sub-catchments 13 to 15). Parts of Waltham/Linwood (sub-catchments 5 & 6) and Spreydon (sub-catchment 10) have extensive areas with a particularly high water table, as do sub-catchments 18, 19 and 20 south of the river. In all of the sub-catchments where groundwater depth below surface is shallow, it is necessary to be mindful of cascading effects on liquefaction hazard during earthquake events, including earthquake-induced drainage network and stormwater infrastructure damage. In turn, subsidence induced by liquefaction and other earthquake processes during the CES directly affected groundwater depth below surface across large parts of the central Ōpāwaho Heathcote catchment. The estuary margin of the catchment also faces increasing future challenges with sea level rise, which has the potential to elevate groundwater levels in these areas, compounding existing liquefaction and other earthquake associated multi-hazards. Any increases in subsurface runoff due to drainage system, development or climate changes are also of concern for the loess covered hill slopes due to the potential to enhance mass movement hazards. Earthquakes: Earthquake associated vertical ground displacement and liquefaction have historically affected, or are in future predicted to affect, all Ōpāwaho Heathcote sub-catchments. During the CES, these phenomena induced a significant cascades of changes in the city’s drainage systems, including: extensive vertical displacement and liquefaction induced damage to stormwater ‘greyware’, reducing functionality of the stormwater system; damage to the wastewater system which temporarily lowered groundwater levels and increased stormwater drainage via the wastewater network on the one hand, creating a pollution multi-hazard for FPF on the other hand; liquefaction and vertical displacement induced river channel changes affected drainage capacities; subsidence induced losses in soakage and infiltration capacities; changes occurred in topographic drainage conductivity; estuary subsidence (mainly around the Ōtākaro Avon rivermouth) increased both FPF and coastal inundation hazards; estuary bed uplift (severe around the Ōpāwaho Heathcote margins), reduced tidal prisms and increased bed friction, producing an overall reduction the waterbody’s capacity to efficiently flush catchment floodwaters to sea; and changes in estuarine and riverine ecosystems. All such possible effects need to be considered when evaluating present and future capacities of the Ōpāwaho Heathcote catchment FPF management systems. These phenomena are particularly of concern in the Ōpāwaho Heathcote catchment since stormwater networks must deal with constraints imposed by stream and river channels (past and present), estuarine shorelines and complex hill topography. Mass movements: Mass movements are primarily a risk in the Port Hills areas of the Ōpāwaho Heathcote catchment (sub-catchments 1, 2, 7, 9, 11, 16, 21), though there are one or two small but susceptible areas on the banks of the Ōpāwaho Heathcote River. Mass movements in the form of rockfalls and debris flows occurred on the Port Hills during the CES, resulting in building damage, fatalities and evacuations. Evidence has also been found of earthquake-triggered tunnel gully collapsesin all Port Hill Valleys. Follow-on effects of these mass movements are likely to occur in major future FPF and other hazard events. Of note, elevated groundwater levels, coastal inundation, earthquakes (including liquefaction and other effects), and mass movement exhibit the most extensive levels of multi-hazard interaction with FPF hazard. Further, all of the analysed multi-hazard interactions except earthquakes were found to consistently produce increases in the FPF hazard. The implications of these analyses are that multihazard interactions generally enhance the FPF hazard in the Ōpāwaho Heathcote catchment. Hence, management plans which exclude adjustments for multi-hazard interactions are likely to underestimate the FPF hazard in numerous different ways. In conclusion, although only a one-way analysis of the potential effects of selected multi-hazards on FPF hazard, this review highlights that the Ōpāwaho Heathcote catchment is an inherently multi- hazard prone environment. The implications of the interactions and process linkages revealed in this report are that several significant multi-hazard influences and process interactions must be taken into account in order to design a resilient FPF hazard management strategy.