Search

found 137 results

Images, UC QuakeStudies

A group of residents stand talking on the footpath beside River Road. The photographer comments, "Our neighbours were mostly already displaced by the Sep 4 2010 quakes. We all happened to arrive at the same time, so we had a good chat. From L-R; Deidre Crichton (389), Julie and Philip Cheyne (391), Marike Begg (363), Susannah and Kim Collins (383), Andy Corbin (389)".

Images, eqnz.chch.2010

On a walk around the city to find out of the Demolition work on the Victoria Sq Apartments. Taking up a digger it took some times to manmover it up there! Feb 17, 2014 Christchurch New Zealand. www.stuff.co.nz/the-press/ne...

Images, eqnz.chch.2010

Demolition of the old Millers building is just about complemented. On my walk around the city in the rain.. thought it may have stopped.. but didn't so I just kept walking! June 12, 2014 Christchurch New Zealand.

Images, eqnz.chch.2010

I am going away for a short time for a holiday and well get back to you all when I get home. Demotion of the Victoria Sq apartments on a walk around the city Feb 26, 2014 Christchurch New Zealand. www...

Research papers, The University of Auckland Library

The city of Christchurch has experienced over 10,000 aftershocks since the 4th of September 2010 earthquake of which approximately 50 have been greater than magnitude 5. The damage caused to URM buildings in Christchurch over this sequence of earthquakes has been well documented. Due to the similarity in age and construction of URM buildings in Adelaide, South Australia and Christchurch (they are sister cities, of similar age and heritage), an investigation was conducted to learn lessons for Adelaide based on the Christchurch experience. To this end, the number of URM buildings in the central business districts of both cities, the extent of seismic strengthening that exists in both cities, and the relative earthquake hazards for both cities were considered. This paper will report on these findings and recommend strategies that the city of Adelaide could consider to significantly reduce the seismic risk posed by URM buildings in future earthquake.

Images, eqnz.chch.2010

The centennial pool demolition is under way. On a walk around the city to catch up on events happening June 18, 2014 Christchurch New Zealand. Swimsuits have been hung on the fence around the Centennial Pool by campaigners against the complex's demolition. The Armagh St facility is being pulled down to make way for the new Margaret Mahy Fami...

Images, eqnz.chch.2010

Christchurch "New Zealand" architecture building "Demolition of old Millers building" demolition detail rubbleDemolition started on the old Millers building on a walk around Christchurch May 6, 2013 New Zealand. The building was originally designed in 1935 by G. A. Hart for the retail store, factory and warehouse Millers and was completed in 19...

Images, eqnz.chch.2010

The centennial pool demolition is under way. On a walk around the city to catch up on events happening June 18, 2014 Christchurch New Zealand. Swimsuits have been hung on the fence around the Centennial Pool by campaigners against the complex's demolition. The Armagh St facility is being pulled down to make way for the new Margaret Mahy Fami...

Images, eqnz.chch.2010

The centennial pool demolition is under way. On a walk around the city to catch up on events happening June 18, 2014 Christchurch New Zealand. Swimsuits have been hung on the fence around the Centennial Pool by campaigners against the complex's demolition. The Armagh St facility is being pulled down to make way for the new Margaret Mahy Fami...

Images, eqnz.chch.2010

On a walk around the city to catch up on what is happening May 29, 2014 Christchurch New Zealand. Demolition work on Christchurch's "distinctive" former civic building is under way. The category-2 heritage building was designed by G A J Hart and opened in 1939 as the Miller's department store. It featured the South Island's first escalator, w...

Images, eqnz.chch.2010

Earthquake damaged building on a Walk around the city, May 1, 2014 Christchurch New Zealand. Demolition work on Christchurch's "distinctive" former civic building is under way. The category-2 heritage building was designed by G A J Hart and opened in 1939 as the Miller's department store. It featured the South Island's first escalator, which...

Images, eqnz.chch.2010

Demolition work on Christchurch's "distinctive" former civic building and the Front Runner store. On a walk around Christchurch May 9, 2013 New Zealand. Demolition work on Christchurch's "distinctive" former civic building is under way. The category-2 heritage building was designed by G A J Hart and opened in 1939 as the Miller's department s...

Images, eqnz.chch.2010

Earthquake damaged building on a Walk around the city, May 1, 2014 Christchurch New Zealand. Demolition work on Christchurch's "distinctive" former civic building is under way. The category-2 heritage building was designed by G A J Hart and opened in 1939 as the Miller's department store. It featured the South Island's first escalator, which...

Research Papers, Lincoln University

Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km²), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management.

Research papers, University of Canterbury Library

This poster presents work to date on ground motion simulation validation and inversion for the Canterbury, New Zealand region. Recent developments have focused on the collection of different earthquake sources and the verification of the SPECFEM3D software package in forward and inverse simulations. SPECFEM3D is an open source software package which simulates seismic wave propagation and performs adjoint tomography based upon the spectral-element method. Figure 2: Fence diagrams of shear wave velocities highlighting the salient features of the (a) 1D Canterbury velocity model, and (b) 3D Canterbury velocity model. Figure 5: Seismic sources and strong motion stations in the South Island of New Zealand, and corresponding ray paths of observed ground motions. Figure 3: Domain used for the 19th October 2010 Mw 4.8 case study event including the location of the seismic source and strong motion stations. By understanding the predictive and inversion capabilities of SPECFEM3D, the current 3D Canterbury Velocity Model can be iteratively improved to better predict the observed ground motions. This is achieved by minimizing the misfit between observed and simulated ground motions using the built-in optimization algorithm. Figure 1 shows the Canterbury Velocity Model domain considered including the locations of small-to-moderate Mw events [3-4.5], strong motion stations, and ray paths of observed ground motions. The area covered by the ray paths essentially indicates the area of the model which will be most affected by the waveform inversion. The seismic sources used in the ground motion simulations are centroid moment tensor solutions obtained from GeoNet. All earthquake ruptures are modelled as point sources with a Gaussian source time function. The minimum Mw limit is enforced to ensure good signal-to-noise ratio and well constrained source parameters. The maximum Mw limit is enforced to ensure the point source approximation is valid and to minimize off-fault nonlinear effects.

Research Papers, Lincoln University

Numerous studies have shown that urban soils can contain elevated concentrations of heavy metals (HMs). Christchurch, New Zealand, is a relatively young city (150 years old) with a population of 390,000. Most soils in Christchurch are sub-urban, with food production in residential gardens a popular activity. Earthquakes in 2010 and 2011 have resulted in the re-zoning of 630 ha of Christchurch, with suggestions that some of this land could be used for community gardens. We aimed to determine the HM concentrations in a selection of suburban gardens in Christchurch as well as in soils identified as being at risk of HM contamination due to hazardous former land uses or nearby activities. Heavy metal concentrations in suburban Christchurch garden soils were higher than normal background soil concentrations. Some 46% of the urban garden samples had Pb concentrations higher than the residential land use national standard of 210 mg kg⁻¹, with the most contaminated soil containing 2615 mg kg⁻¹ Pb. Concentrations of As and Zn exceeded the residential land use national standards (20 mg kg⁻¹ As and 400 mg kg⁻¹ Zn) in 20% of the soils. Older neighbourhoods had significantly higher soil HM concentrations than younger neighbourhoods. Neighbourhoods developed pre-1950s had a mean Pb concentration of 282 mg kg⁻¹ in their garden soils. Soil HM concentrations should be key criteria when determining the future land use of former residential areas that have been demolished because of the earthquakes in 2010 and 2011. Redeveloping these areas as parklands or forests would result in less human HM exposure than agriculture or community gardens where food is produced and bare soil is exposed.

Research Papers, Lincoln University

We examined the stratigraphy of alluvial fans formed at the steep range front of the Southern Alps at Te Taho, on the north bank of the Whataroa River in central West Coast, South Island, New Zealand. The range front coincides with the Alpine Fault, an Australian-Pacific plate boundary fault, which produces regular earthquakes. Our study of range front fans revealed aggradation at 100- to 300-year intervals. Radiocarbon ages and soil residence times (SRTs) estimated by a quantitative profile development index allowed us to elucidate the characteristics of four episodes of aggradation since 1000 CE. We postulate a repeating mode of fan behaviour (fan response cycle [FRC]) linked to earthquake cycles via earthquake-triggered landslides. FRCs are characterised by short response time (aggradation followed by incision) and a long phase when channels are entrenched and fan surfaces are stable (persistence time). Currently, the Te Taho and Whataroa River fans are in the latter phase. The four episodes of fan building we determined from an OxCal sequence model correlate to Alpine Fault earthquakes (or other subsidiary events) and support prior landscape evolution studies indicating ≥M7.5 earthquakes as the main driver of episodic sedimentation. Our findings are consistent with other historic non-earthquake events on the West Coast but indicate faster responses than other earthquake sites in New Zealand and elsewhere where rainfall and stream gradients (the basis for stream power) are lower. Judging from the thickness of fan deposits and the short response times, we conclude that pastoral farming (current land-use) on the fans and probably across much of the Whataroa River fan would be impossible for several decades after a major earthquake. The sustainability of regional tourism and agriculture is at risk, more so because of the vulnerability of the single through road in the region (State Highway 6).