Residents walk along River Road past large cracks where the road has slumped towards the river. The photographer comments, "Lateral spreading cracks in River Rd; the land left of the crack moved towards the river. The Banks Ave/Dallington Tce end of our block is impassable".
Trees alongside the Avon River in Richmond. The river level is high, and the water is grey with silt. One of the trees is leaning towards the river. The photographer comments, "High river levels because of liquefaction in the Avon. Near 373 River Rd, Richmond".
A video of a presentation by Garry Williams during the fourth plenary of the 2016 People in Disasters Conference. Williams is the Programme Manager of the Ministry of Education's Greater Christchurch Education Renewal Programme. The presentation is titled, "Education Renewal: A section response to the February 2011 Christchurch earthquake".The abstract for this presentation reads as follows: The Canterbury earthquakes caused a disaster recovery situation unparalleled in New Zealand's history. In addition to widespread damage to residential dwellings and destruction of Christchurch's central business district, the earthquakes damaged more than 200 schools from Hurunui in the north, to the Mackenzie District in the east, and Timaru in the south. The impact on education provision was substantial, with the majority of early childhood centres, schools and tertiary providers experiencing damage or subsequent, with the majority of early childhood centres, schools and tertiary providers experiencing damage or subsequent operational issues caused by the ensuing migration of people. Following the February earthquake, over 12,000 students had left the school they had been attending and enrolled elsewhere - often at a school outside the region. Shortened school days and compression of teaching into short periods meant shift-sharing students engaged in the curriculum being delivered in more diverse ways. School principals and staff reported increased fatigue and stress and changes in student behaviours, often related to repeated exposure to and ongoing reminders of the trauma of the earthquakes. While there has been a shift from direct, trauma-related presentations to the indirect effects of psychological adversity and daily life stresses, international experiences tells us that psychological recovery generally lags behind the immediate physical recovery and rebuilding. The Ministries of Health and Education and the Canterbury District Health Board have developed and implemented a joint action plan to address specifically the emerging mental health issues for youth in Canterbury. However, the impact of vulnerable and stressed adults on children's behaviour contributes to the overall impact of ongoing wellbeing issues on the educational outcomes for the community. There is substantial evidence supporting the need to focus on adults' resilience so they can support children and youth. Much of the Ministry's work around supporting children under stress is through supporting the adults responsible for teaching them and leading their schools. The education renewal programme exists to assist education communities to rebuild and look toward renewal. The response to the earthquakes provides a significant opportunity to better meet the needs and aspirations of children and youth people. All the parents want to see their children eager to learn, achieving success, and gaining knowledge and skills that will, in time, enable them to become confident, adaptable, economically independent adults. But this is not always the case, hence our approach to education renewal seeks to address inequities and improve outcome, while prioritising actions that will have a positive impact on learners in greatest need of assistance.
A vehicle drives onto the damaged Dallington bridge. The land has slumped relative to the bridge, leaving the approach road at a steep incline. The photographer comments, "Dallington Bridge northern approach, Gayhurst Rd".
Detail of damage to the Cathedral of the Blessed Sacrament. The cross on the roof is on a lean. The photographer comments, "A bike ride around the CBD. Catholic Cathedral, Barbadoes St".
The top of one of the towers from the Arts Centre has been placed on the ground to prevent further damage. The photographer comments, "A bike ride around the CBD. Arts Centre".
A vehicle drives onto the damaged Dallington bridge. The land has slumped relative to the bridge, leaving the approach road at a steep incline. The photographer comments, "Dallington Bridge northern approach, Gayhurst Rd".
This poster presents work to date on ground motion simulation validation and inversion for the Canterbury, New Zealand region. Recent developments have focused on the collection of different earthquake sources and the verification of the SPECFEM3D software package in forward and inverse simulations. SPECFEM3D is an open source software package which simulates seismic wave propagation and performs adjoint tomography based upon the spectral-element method. Figure 2: Fence diagrams of shear wave velocities highlighting the salient features of the (a) 1D Canterbury velocity model, and (b) 3D Canterbury velocity model. Figure 5: Seismic sources and strong motion stations in the South Island of New Zealand, and corresponding ray paths of observed ground motions. Figure 3: Domain used for the 19th October 2010 Mw 4.8 case study event including the location of the seismic source and strong motion stations. By understanding the predictive and inversion capabilities of SPECFEM3D, the current 3D Canterbury Velocity Model can be iteratively improved to better predict the observed ground motions. This is achieved by minimizing the misfit between observed and simulated ground motions using the built-in optimization algorithm. Figure 1 shows the Canterbury Velocity Model domain considered including the locations of small-to-moderate Mw events [3-4.5], strong motion stations, and ray paths of observed ground motions. The area covered by the ray paths essentially indicates the area of the model which will be most affected by the waveform inversion. The seismic sources used in the ground motion simulations are centroid moment tensor solutions obtained from GeoNet. All earthquake ruptures are modelled as point sources with a Gaussian source time function. The minimum Mw limit is enforced to ensure good signal-to-noise ratio and well constrained source parameters. The maximum Mw limit is enforced to ensure the point source approximation is valid and to minimize off-fault nonlinear effects.
After the Christchurch earthquakes, the government declared about 8000 houses as Red Zoned, prohibiting further developments in these properties, and offering the owners to buy them out. The government provided two options for owners: the first was full payment for both land and dwelling at the 2007 property evaluation, the second was payment for land, and the rest to be paid by the owner’s insurance. Most people chose the second option. Using data from LINZ combined with data from StatNZ, this project empirically investigates what led people to choose this second option, and what were the implications of these choices for the owners’ wealth and income.
Members of the University of Canterbury's E-Learning team Lei Zhang and Jess Hollis in their temporary office in the University Printery building. The photographer comments, "The University restarts its teaching, and the techies in e-learning move out of NZi3. Our end of the temporary office; Lei, my desk in the corner, Jess in the other corner (with a window to the admin/reception desk between us), Paul's desk right foreground. (He's home with a cold.)
Internal damage to a house in Richmond. A doorframe has visibly warped, leaving a gap between the frame and the door. Outside, cracks can be seen in the concrete patio. The photographer comments, "Sunroom - bifold doors are now separated from the frame. The doors on the left blew right out in a strong wind 2 weeks after the quake".
People look through the cordon fencing on the Bridge of Remembrance. The Grand Chancellor can be seen through the arch of the bridge.
People look through the cordon fencing on the Bridge of Remembrance. The Grand Chancellor can be seen through the arch of the bridge.
The sewage treatment ponds in Bromley. In the distance trucks and diggers can be seen piling up liquefaction silt. The photographer comments, "Looking NW from the causeway through the sewage wetlands. Mountains of liquefaction silt are being piled up near the corner of Breezes Rd and SH74-Anzac Drive".
Trucks and diggers build large piles of liquefaction silt. In the foreground can be seen the Bromley sewage treatment ponds. The photographer comments, "Looking NW from the causeway through the sewage wetlands. Mountains of liquefaction silt are being piled up near the corner of Breezes Rd and SH74-Anzac Drive".
The University of Canterbury is known internationally for the Origins of New Zealand English (ONZE) corpus (see Gordon et al 2004). ONZE is a large collection of recordings from people born between 1851 and 1984, and it has been widely utilised for linguistic and sociolinguistic research on New Zealand English. The ONZE data is varied. The recordings from the Mobile Unit (MU) are interviews and were collected by members of the NZ Broadcasting service shortly after the Second World War, with the aim of recording stories from New Zealanders outside the main city centres. These were supplemented by interview recordings carried out mainly in the 1990s and now contained in the Intermediate Archive (IA). The final ONZE collection, the Canterbury Corpus, is a set of interviews and word-list recordings carried out by students at the University of Canterbury. Across the ONZE corpora, there are different interviewers, different interview styles and a myriad of different topics discussed. In this paper, we introduce a new corpus – the QuakeBox – where these contexts are much more consistent and comparable across speakers. The QuakeBox is a corpus which consists largely of audio and video recordings of monologues about the 2010-2011 Canterbury earthquakes. As such, it represents Canterbury speakers’ very recent ‘danger of death’ experiences (see Labov 2013). In this paper, we outline the creation and structure of the corpus, including the practical issues involved in storing the data and gaining speakers’ informed consent for their audio and video data to be included.
A view of the ICTS building at the University of Canterbury, seen from level 7 of the James Hight building. The photographer comments, "First looks at our new temporary (maybe) office space. Our group will stay here until April or May 2011, then will move to another floor in the Central Library. We look down on the IT Building, which is doomed. The ugly draughty IT building is going to be demolished in the next campus revamp. The 'Butterfly Building' behind, originally the mainframe computer centre, will remain, as it's architecturally significant, apparently".
A photograph of the damage to the teeth of a gear from the worm gear drive of the Townsend Telescope. The gear was damaged during the 22 February 2011 earthquake.
A photograph of the damage to the teeth of a gear from the worm gear drive of the Townsend Telescope. The gear was damaged during the 22 February 2011 earthquake.
A photograph of a balance weight on the side of the lower end of the main tube from the Townsend Telescope. The weight and tube were damaged during the 22 February 2011 earthquake.
A photograph of a balance weight on the side of the lower end of the main tube from the Townsend Telescope. The weight and tube were damaged during the 22 February 2011 earthquake.
Damaged buildings on Manchester Street, the facades of which have fallen into the street. The Grand Chancellor can be seen in the background. The photographer comments, "A bike ride around the CBD. Central city, Grand Chancellor at back".
A presentation prepared by one of the site engineers restoring the Memorial Arch and Bridge of Remembrance, outlining the damage to the structures, the repair designs and the construction methodologies.
A photograph of the slow motion assembly on the lower end of the main tube from the Townsend Telescope. The tube was crushed and bent during the 22 February 2011 earthquake.
Damage to the south-west corner of the Cathedral of the Blessed Sacrament. A section of wall has collapsed, exposing the rooms within. The photographer comments, "A bike ride around the CBD. Catholic Cathedral, Barbadoes St".
The Avon River in Richmond. The river level is very high, and the water is grey with silt. The photographer comments, "By the corner of Medway St and River Rd. The Avon seems to be very full, with grey silt laden water".
A crane sits beside the damaged Cranmer Courts building. The stone cladding of a gable end of the building has collapsed, exposing the wooden framework beneath. The photographer comments, "A bike ride around the CBD. Cranmer Courts, Montreal St".
During the 21st century, New Zealand has experienced increasing public concern over the quality of the design and appearance of new developments, and their effects on the urban environment. In response to this, a number of local authorities developed a range of tools to address this issue, including urban design panels to review proposals and provide independent advice. Following the 2010 and 2011 Canterbury earthquake sequence, the commitment to achieve high quality urban design within Christchurch was given further importance, with the city facing the unprecedented challenge of rebuilding a ‘vibrant and successful city’. The rebuild and regeneration reinforced the need for independent design review, putting more focus and emphasis on the role and use of the urban design panel; first through collaboratively assisting applicants in achieving a better design outcome for their development by providing an independent set of eyes on their design; and secondly in assisting Council officers in forming their recommendations on resource consent decisions. However, there is a perception that urban design and the role of the urban design panel is not fully understood, with some stakeholders arguing that Council’s urban design requirements are adding cost and complexity to their developments. The purpose of this research was to develop a better understanding on the role of the Christchurch urban design panel post-earthquake in the central city; its direct and indirect influence on the built environment; and the deficiencies in the broader planning framework and institutional settings that it might be addressing. Ultimately, the perceived role of the Panel is understood, and there is agreement that urban design is having a positive influence on the built environment, albeit viewed differently amongst the varying groups involved. What has become clear throughout this research is that the perceived tension between the development community and urban design well and truly exists, with the urban design panel contributing towards this. This tension is exacerbated further through the cost of urban design to developers, and the drive for financial return from their investments. The panel, albeit promoting a positive experience, is simply a ‘tick box’ exercise for some, and as the research suggests, groups or professional are determining themselves what constitutes good urban design, based on their attitude, the context in which they sit and the financial constraints to incorporate good design elements. It is perhaps a bleak time for urban design, and more about building homes.
On 4 September 2010, a 7.1 magnitude earthquake struck near Darfield, 40 kilometres west of Christchurch, New Zealand. The quake caused significant damage to land and buildings nearby, with damage extending to Christchurch city. On 22 February 2011, a 6.3 magnitude earthquake struck Christchurch, causing extensive and significant damage across the city and with the loss of 185 lives. Years on from these events, occasional large aftershocks continue to shake the region. Two main entomological collections were situated within close proximity to the 2010/11 Canterbury earthquakes. The Lincoln University Entomology Research Collection, which is housed on the 5th floor of a 7 storey building, was 27.5 km from the 2010 Darfield earthquake epicentre. The Canterbury Museum Entomology Collection, which is housed in the basement of a multi-storeyed heritage building, was 10 km from the 2011 Christchurch earthquake epicentre. We discuss the impacts of the earthquakes on these collections, the causes of the damage to the specimens and facilities, and subsequent efforts that were made to prevent further damage in the event of future seismic events. We also discuss the wider need for preparedness against the risks posed by natural disasters and other catastrophic events.
Members of the University of Canterbury's Digital Media Group in their temporary office in KB02 in Kirkwood Village, the complex of prefabs set up after the earthquakes to provide temporary office and classroom space for the university. The photographer comments, "The e-learning group and the video conferencing team are now located in the Kirkwood Village at the University of Canterbury. It's a very impressive project, about 60 buildings arranged in various configurations with some used for teaching or computer labs, and others as staff offices. We will probably stay here for several years now. Looking along the south wall, Herbert Thomas and Susan Tull already settled in and working".