Search

found 1685 results

Images, UC QuakeStudies

Damage to the Crichton Cobbers Youth and Community Club. Large sections of the brick walls have collapsed, and two large beams lie across the rubble. Cordon fencing surrounds this and nearby buildings. The photographer comments, "A bike ride around the CBD. Old brewery, later a gym - Fitzgerald Ave".

Images, UC QuakeStudies

A stone gable wall of one of the buildings of the Beulah Christian Fellowship has partly collapsed, damaging the roof below. The photographer comments, "A bike ride around the CBD. I think this must be part of the Beulah Christian Fellowship. Taken from Edgeware Rd".

Research papers, The University of Auckland Library

The recent instances of seismic activity in Canterbury (2010/11) and Kaikōura (2016) in New Zealand have exposed an unexpected level of damage to non-structural components, such as buried pipelines and building envelope systems. The cost of broken buried infrastructure, such as pipeline systems, to the Christchurch Council was excessive, as was the cost of repairing building envelopes to building owners in both Christchurch and Wellington (due to the Kaikōura earthquake), which indicates there are problems with compliance pathways for both of these systems. Councils rely on product testing and robust engineering design practices to provide compliance certification on the suitability of product systems, while asset and building owners rely on the compliance as proof of an acceptable design. In addition, forensic engineers and lifeline analysts rely on the same product testing and design techniques to analyse earthquake-related failures or predict future outcomes pre-earthquake, respectively. The aim of this research was to record the actual field-observed damage from the Canterbury and Kaikōura earthquakes of seismic damage to buried pipeline and building envelope systems, develop suitable testing protocols to be able to test the systems’ seismic resilience, and produce prediction design tools that deliver results that reflect the collected field observations with better accuracy than the present tools used by forensic engineers and lifeline analysts. The main research chapters of this thesis comprise of four publications that describe the gathering of seismic damage to pipes (Publication 1 of 4) and building envelopes (Publication 2 of 4). Experimental testing and the development of prediction design tools for both systems are described in Publications 3 and 4. The field observation (discussed in Publication 1 of 4) revealed that segmented pipe joints, such as those used in thick-walled PVC pipes, were particularly unsatisfactory with respect to the joint’s seismic resilience capabilities. Once the joint was damaged, silt and other deleterious material were able to penetrate the pipeline, causing blockages and the shutdown of key infrastructure services. At present, the governing Standards for PVC pipes are AS/NZS 1477 (pressure systems) and AS/NZS 1260 (gravity systems), which do not include a protocol for evaluating the PVC pipes for joint seismic resilience. Testing methodologies were designed to test a PVC pipe joint under various different simultaneously applied axial and transverse loads (discussed in Publication 3 of 4). The goal of the laboratory experiment was to establish an easy to apply testing protocol that could fill the void in the mentioned standards and produce boundary data that could be used to develop a design tool that could predict the observed failures given site-specific conditions surrounding the pipe. A tremendous amount of building envelope glazing system damage was recorded in the CBDs of both Christchurch and Wellington, which included gasket dislodgement, cracked glazing, and dislodged glazing. The observational research (Publication 2 of 4) concluded that the glazing systems were a good indication of building envelope damage as the glazing had consistent breaking characteristics, like a ballistic fuse used in forensic blast analysis. The compliance testing protocol recognised in the New Zealand Building Code, Verification Method E2/VM1, relies on the testing method from the Standard AS/NZS 4284 and stipulates the inclusion of typical penetrations, such as glazing systems, to be included in the test specimen. Some of the building envelope systems that failed in the recent New Zealand earthquakes were assessed with glazing systems using either the AS/NZS 4284 or E2/VM1 methods and still failed unexpectedly, which suggests that improvements to the testing protocols are required. An experiment was designed to mimic the observed earthquake damage using bi-directional loading (discussed in Publication 4 of 4) and to identify improvements to the current testing protocol. In a similar way to pipes, the observational and test data was then used to develop a design prediction tool. For both pipes (Publication 3 of 4) and glazing systems (Publication 4 of 4), experimentation suggests that modifying the existing testing Standards would yield more realistic earthquake damage results. The research indicates that including a specific joint testing regime for pipes and positioning the glazing system in a specific location in the specimen would improve the relevant Standards with respect to seismic resilience of these systems. Improving seismic resilience in pipe joints and glazing systems would improve existing Council compliance pathways, which would potentially reduce the liability of damage claims against the government after an earthquake event. The developed design prediction tool, for both pipe and glazing systems, uses local data specific to the system being scrutinised, such as local geology, dimensional characteristics of the system, actual or predicted peak ground accelerations (both vertically and horizontally) and results of product-specific bi-directional testing. The design prediction tools would improve the accuracy of existing techniques used by forensic engineers examining the cause of failure after an earthquake and for lifeline analysts examining predictive earthquake damage scenarios.

Images, UC QuakeStudies

A photograph of a camera operator filming members of Crack'd for Christchurch as they work on their armchair artwork.Crack'd for Christchurch comments, "August 2014. Mike Thorpe and camera man filming Flora for Seven Sharp in anticipation of the launch. Only 4 weeks to go. No grout on the chair yet. From left: Sharon Wilson, Marie Hudson, and Jennie Cooper."

Articles, UC QuakeStudies

A PDF copy of an advertisement for the All Right? 'Compliments' campaign that appeared in The Christchurch Star on 4 December 2013. The advertisement reads, "You've got a lot to offer. Canterbury's been through a lot. Let's remember it's often the simple things that bring the most joy." The advertisement also includes the web address of the All Right? Facebook page.

Images, UC QuakeStudies

A photograph of members of Crack'd for Christchurch working on their armchair artwork. Reporter Mike Thorpe is in the background.Crack'd for Christchurch comments, "August 2014. Mike Thorpe and camera man filming Flora for Seven Sharp in anticipation of the launch. Only 4 weeks to go. No grout on the chair yet. From left: Jenny Cooper, Marie Hudson, and Sharon Wilson."

Images, UC QuakeStudies

A photograph of a camera operator filming members of Crack'd for Christchurch as they work on their armchair artwork.Crack'd for Christchurch comments, "August 2014. Mike Thorpe and camera man filming Flora for Seven Sharp in anticipation of the launch. Only 4 weeks to go. No grout on the chair yet. From left: Helen Campbell, Jennie Cooper, and Marie Hudson."

Images, UC QuakeStudies

A photograph of the earthquake damage to the Canterbury Provincial Chambers Buildings on Durham Street. Large sections of the masonry have collapsed, spilling onto the road. Wire fencing has been placed around the building as a cordon. Scaffolding erected up the side of the building after the 4 September 2010 earthquake has collapsed. In the distance, a crane is parked on the street.

Images, UC QuakeStudies

A police officer talks to the driver of a NZ Post truck at a cordon across Tuam Street. Military personnel stand nearby. The photographer comments, "this was taken shortly after the 4th September earthquake. Police allowed us free access past the cordon and simply advised us to watch out for falling masonry. The access situation was much different after the February aftershock".

Images, UC QuakeStudies

A photograph of Amanda from Christchurch Central standing next to an All Right? advertisement in a Adshel bus stop with her quote on it. The poster reads, "Biking to work on a frosty, sunny morning", in answer to the question "What makes us feel all right?". All Right? posted the photograph on their Facebook Timeline on 27 May 2013 at 4.11pm.