Search

found 1693 results

Images, UC QuakeStudies

A photograph of an earthquake-damaged building in Christchurch. The wall on the side of the house has crumbled, and the bricks have fallen onto the fence and damaged it. Wooden planks have been used to brace the wall towards the back of the property. A red sticker on the front window indicates that the house is unsafe to enter.

Research papers, The University of Auckland Library

The research presented in this thesis investigated the environmental impacts of structural design decisions across the life of buildings located in seismic regions. In particular, the impacts of expected earthquake damage were incorporated into a traditional life cycle assessment (LCA) using a probabilistic method, and links between sustainable and resilient design were established for a range of case-study buildings designed for different seismic performance objectives. These links were quantified using a metric herein referred to as the seismic carbon risk, which represents the expected environmental impacts and resource use indicators associated with earthquake damage during buildings’ life. The research was broken into three distinct parts: (1) a city-level evaluation of the environmental impacts of demolitions following the 2010/2011 Canterbury earthquake sequence in New Zealand, (2) the development of a probabilistic framework to incorporate earthquake damage into LCA, and (3) using case-study buildings to establish links between sustainable and resilient design. The first phase of the research focused on the environmental impacts of demolitions in Christchurch, New Zealand following the 2010/2011 Canterbury Earthquake Sequence. This large case study was used to investigate the environmental impact of the demolition of concrete buildings considering the embodied carbon and waste stream distribution. The embodied carbon was considered here as kilograms of CO2 equivalent that occurs on production, construction, and waste management stage. The results clearly demonstrated the significant environmental impacts that can result from moderate and large earthquakes in urban areas, and the importance of including environmental considerations when making post-earthquake demolition decisions. The next phase of the work introduced a framework for incorporating the impacts of expected earthquake damage based on a probabilistic approach into traditional LCA to allow for a comparison of seismic design decisions using a carbon lens. Here, in addition to initial construction impacts, the seismic carbon risk was quantified, including the impacts of seismic repair activities and total loss scenarios assuming reconstruction in case of non-reparability. A process-based LCA was performed to obtain the environmental consequence functions associated with structural and non-structural repair activities for multiple environmental indicators. In the final phase of the work, multiple case-study buildings were used to investigate the seismic consequences of different structural design decisions for buildings in seismic regions. Here, two case-study buildings were designed to multiple performance objectives, and the upfront carbon costs, and well as the seismic carbon risk across the building life were compared. The buildings were evaluated using the framework established in phase 2, and the results demonstrated that the seismic carbon risk can significantly be reduced with only minimal changes to the upfront carbon for buildings designed for a higher base shear or with seismic protective systems. This provided valuable insight into the links between resilient and sustainable design decisions. Finally, the results and observations from the work across the three phases of research described above were used to inform a discussion on important assumptions and topics that need to be considered when quantifying the environmental impacts of earthquake damage on buildings. These include: selection of a non-repairable threshold (e.g. a value beyond which a building would be demolished rather than repaired), the time value of carbon (e.g. when in the building life the carbon is released), the changing carbon intensity of structural materials over time, and the consideration of deterministic vs. probabilistic results. Each of these topics was explored in some detail to provide a clear pathway for future work in this area.

Images, UC QuakeStudies

Damage to the church hall of St John the Baptist Church in Latimer Square. Masonry has fallen from one of the building's gables and has been piled against its base. The site has been enclosed in a safety fence. A spray-painted sign can be seen at the base of the building reading, "Danger! Wall unstable, stay clear". A piece of plywood is also visible weather proofing the building's roof.

Images, UC QuakeStudies

A photograph of the rubble from the demolished Domo furniture store on Tuam Street. In the background is the earthquake-damaged McKenzie & Willis store. The closest wall of the building has collapsed, exposing the inside of the building. Scaffolding has been constructed on the top floor in order to brace the ceiling. Shipping containers have been placed on the street in front of the building.

Images, UC QuakeStudies

A photograph of a member of an emergency management team in front of a earthquake-damaged building next to Calendar Girls on Hereford Street. The outer wall of the second storey of the building has collapsed, the bricks spilling onto the footpath below. USAR codes have been spray-painted on a window and a column of the building. Codes have also been spray-painted on the front of Calendar Girls.

Images, UC QuakeStudies

A photograph of emergency management personnel examining the back of a building on Tuam Street. Scaffolding has been constructed up the sides of the building and wire fencing has been placed around the back. To the right is a large pile of rubble from other earthquake-damaged buildings. Rubble is also piled up on the side of the road in the distance.