Search

found 1372 results

Images, UC QuakeStudies

A photograph of signs on the side of the Christchurch Art Gallery. The art gallery served as the temporary headquarters for Civil Defence after the 22 February 2011 earthquake. The signs read, "Media Info, Christchurch Earthquake Response" and "Media Briefings, every day 10:30 and 17:30 hours in auditorium". There is also a map showing access points into the central city.

Images, UC QuakeStudies

Photograph captioned by BeckerFraserPhotos, "Site of the old Press Building in Cathedral Square and from left to right, Novatel Hotel, Price Waterhouse Coopers Building, Isaac Theatre Royal (behind the crane), new Press Building, Tramway Junction with the Rendevous Hotel showing above".

Images, UC QuakeStudies

A photograph captioned by BeckerFraserPhotos, "The Octagon Live Restaurant, formerly Trinity Congregational Church, on the corner of Manchester and Worcester Street. This was further damaged in the 23 December 2011 earthquake when a big piece of the rose window fell out".

Images, UC QuakeStudies

Photograph captioned by BeckerFraserPhotos, "Demolition site of the Allan McLean building, on the corner of Colombo Street and Oxford Terrace. The PricewaterhouseCoopers building is behind. The green digger is feeding the yellow concrete muncher while the red digger redistributes the munched up concrete".

Images, UC QuakeStudies

A pile of rubble from a demolished building on Worcester Street. In the background, the partially demolished Warners Hotel can be seen as well as the Novotel and the PricewaterhouseCoopers Building in the distance. A digger and long-reach excavator can also be seen.

Videos, UC QuakeStudies

A video of a tour through the Christchurch central city Red Zone. The video includes footage of Armagh Street, Madras Street, Latimer Square, St John's Anglican Church, Hereford Street, the Octagon Live restaurant, the Design and Arts building, the High Street mall, and the Grand Chancellor Hotel. It also includes footage of construction workers cutting up metal beams, and clearing rubble from a building on Manchester Street.

Videos, UC QuakeStudies

Aerial footage of the Christchurch central city, taken in April 2011, several months after the 22 February 2011 earthquake. The video shows damage to the Cathedral of the Blessed Sacrament, Manchester Street, the Press building, the Octagon Live restaurant, St Elmo Courts, Cashel Mall, the Regent Theatre, the Arts Centre, Woolsack Lane, and the Farmers Building car park. It also shows USAR members meeting in Cathedral Square.

Research Papers, Lincoln University

The aftermath of three earthquakes has forced Christchurch to re-plan and rebuild. New perspectives of a sustainable city have arisen granting Christchurch the chance of becoming an example to the world. This work is centred on bioclimatic landscape design as a base for greening strategies. It deals with strategic landscape design adapted to a specific climate, from a user’s perspective. The investigation will be applied to Christchurch’s urban centres, assessing cultural adaptability to the local climate and implications for landscape design. Climatic data shows that humidity is not a local problem. However, the wind is the determinant. In Christchurch the solar radiation and the prevailing winds are the most important microclimatic variables, the latter intensifying the loss of surface heat, decreasing the radiant temperature and affecting thermal sensation. The research objective is to explore design parameters at the street-scale and identify ways to maximise thermal comfort in outdoor spaces through design-based strategies. The investigation will apply methods of participant observation, depth interviews, climatic data collection and design experimentation based on thermal comfort models and computer simulation tools. Case study sites chosen for investigation are places with current levels of activity that may be anticipated in the rebuild of the central city. The research will have two main outcomes: improved understanding of local urban culture adaptation to microclimate, and a demonstration of how design can enhance adaption. These outcomes will inform designers and city managers about good design practices and strategies that can be used to ensure a long term liveable city.

Images, UC QuakeStudies

A photograph captioned by BeckerFraserPhotos, "The demolition site of the Press building and Warners Hotel in Cathedral Square. The site has now been filled and compressed so that it provides a much pleasanter environment. From here, there is now a marvellous view of the Heritage Apartments building, which allows us a wider perspective of the building than was possible before".

Images, UC QuakeStudies

An aerial photograph captioned by BeckerFraserPhotos, "Victoria Square is at the centre of this picture with its green lawns and trees. The bare patch of earth in front s the demolition sites of the Allan McLean building, the Oxford on Avon, and Plunket House. The contract to demolish the Crowne Plaza Hotel has been let, while the fate of the Town Hall is still undecided. The Convention Centre is coming down. On the very bottom, slightly to the right is the Medlab building which is also to be demolished. In the bottom left corner is the PWC building which is also to be demolished".

Research Papers, Lincoln University

The 48hr Design Challenge, run by the Christchurch City Council and held at Lincoln University, provided an opportunity for Council to gain inspiration from the design and architecture industry, while testing the draft Central City Plan currently being developed. The Challenge was a response to the recent earthquakes in Christchurch and brought together local and international talent. A total of 15 teams took part in the Challenge, with seven people in each including engineers, planners, urban designers, architects and landscape architects, as well as one student on each team. The four sites within the Red Zone included the Cathedral Square and BNZ Building; 160 Gloucester Street; the Orion NZ Building at 203 Gloucester Street; and 90 Armagh Street, including the Avon River and Victoria Square. The fifth site, which sits outside the Red Zone, is the former Christchurch Women’s Hospital at 885 Colombo Street. This is team SoLA's entry for 160 Gloucester Street.

Images, UC QuakeStudies

An aerial photograph of Hereford Street and Cathedral Square. The photograph has been captioned by BeckerFraserPhotos, "Hereford Street running across the foreground of this photograph, with Cathedral Square above. The IBIS Hotel and the ANZ Bank are staying, while the BNZ is currently being soft-stripped. Christ Church Cathedral officially has a status of 'partial demolish'".

Audio, Radio New Zealand

The Alps and ranges around New Zealand are now laden with snow yet while most of us are hunkering down and keeping warm, some in Canterbury are still having to get on within a broken city following this year's earlier devastating earthquakes. Bryan began by speaking to Major Mike Allwright of the Salvation Army and followed up with Lyttleton musician Lindon Puffin. Bryan also spoke to Christine Parker from the Eastern suburb of Aranui and Regina Nyadani who lives in central Christchurch with her family.

Research papers, The University of Auckland Library

The region in and around Christchurch, encompassing Christchurch city and the Selwyn and Waimakariri districts, contains more than 800 road, rail, and pedestrian bridges. Most of these bridges are reinforced concrete, symmetric, and have small to moderate spans (15–25 m). The 22 February 2011 moment magnitude (Mw) 6.2 Christchurch earthquake induced high levels of localized ground shaking (Bradley and Cubrinovski 2011, page 853 of this issue; Guidotti et al. 2011, page 767 of this issue; Smyrou et al. 2011, page 882 of this issue), with damage to bridges mainly confined to the central and eastern parts of Christchurch. Liquefaction was evident over much of this part of the city, with lateral spreading affecting bridges spanning both the Avon and Heathcote rivers.

Images, UC QuakeStudies

An aerial photograph of High, Lichfield, Manchester, and Tuam Streets. The photographs has been captioned by BeckerFraserPhotos, "High Street can be seen running from the bottom left to the top right of the photograph. The old Majestic Theatre is prominent halfway up on the left. The prominent streets are Lichfield Street (on the left) and Tuam Street (on the right)".

Images, eqnz.chch.2010

Much of the CBD is still cordoned off and without power (as you should be able to spot) as a result of the damage caused by February's deadly earthquake. This photo clearly shows the extent of the lean that the Hotel Grand Chancellor is now on. Apparently it is out by 1m at the top leaning east. Demolition will start about mid June and is expec...

Images, UC QuakeStudies

An aerial photograph of the Christchurch CBD. The photograph has been captioned by BeckerFraserPhotos, "This photograph shows the many tall CBD buildings, with the Hotel Grand Chancellor under demolition in the centre of the photograph. The street in the foreground running up the photograph from left to right is Lichfield Street with the old Bus Exchange clearly visible".

Videos, UC QuakeStudies

A video about Whare, a gift and homeware store which relocated several times after the 4 September 2010 earthquake. Whare originally had two stores, one in Beckenham, and another on Lichfield Street in the central city. Both stores were closed as a result of the 22 February 2011 earthquake. The store reopened temporarily in a garage and then in the Snowride Store on Lincoln Road. This video was part of The Press's 'Up and Running' series which showcases businesses which have stayed up and running despite the challenges posed by the 2010 and 2011 Canterbury earthquakes.

Research papers, University of Canterbury Library

The 22 February 2011, Mw6.2-6.3 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing 181 fatalities and severely damaging thousands of residential and commercial buildings, and most of the city lifelines and infrastructure. This manuscript presents an overview of observed geotechnical aspects of this earthquake as well as some of the completed and on-going research investigations. A unique aspect, which is particularly emphasized, is the severity and spatial extent of liquefaction occurring in native soils. Overall, both the spatial extent and severity of liquefaction in the city was greater than in the preceding 4th September 2010 Darfield earthquake, including numerous areas that liquefied in both events. Liquefaction and lateral spreading, variable over both large and short spatial scales, affected commercial structures in the Central Business District (CBD) in a variety of ways including: total and differential settlements and tilting; punching settlements of structures with shallow foundations; differential movements of components of complex structures; and interaction of adjacent structures via common foundation soils. Liquefaction was most severe in residential areas located to the east of the CBD as a result of stronger ground shaking due to the proximity to the causative fault, a high water table approximately 1m from the surface, and soils with composition and states of high susceptibility and potential for liquefaction. Total and differential settlements, and lateral movements, due to liquefaction and lateral spreading is estimated to have severely compromised 15,000 residential structures, the majority of which otherwise sustained only minor to moderate damage directly due to inertial loading from ground shaking. Liquefaction also had a profound effect on lifelines and other infrastructure, particularly bridge structures, and underground services. Minor damage was also observed at flood stop banks to the north of the city, which were more severely impacted in the 4th September 2010 Darfield earthquake. Due to the large high-frequency ground motion in the Port hills numerous rock falls and landslides also occurred, resulting in several fatalities and rendering some residential areas uninhabitable.

Research papers, University of Canterbury Library

On 22 February 2011,a magnitude Mw 6.3 earthquake occurred with an epicenter located near Lyttelton at about 10km from Christchurch in Canterbury region on the South Island of New Zealand (Figure 1). Since this earthquake occurred in the midst of the aftershock activity which had continued since the 4 September 2010 Darfield Earthquake occurrence, it was considered to be an aftershock of the initial earthquake. Because of the short distance to the city and the shallower depth of the epicenter, this earthquake caused more significant damage to pipelines, traffic facilities, residential houses/properties and multi-story buildings in the central business district than the September 2010 Darfield Earthquake in spite of its smaller earthquake magnitude. Unfortunately, this earthquake resulted in significant number of casualties due to the collapse of multi-story buildings and unreinforced masonry structures in the city center of Christchurch. As of 4 April, 172 casualties were reported and the final death toll is expected to be 181. While it is extremely regrettable that Christchurch suffered a terrible number of victims, civil and geotechnical engineers have this hard-to-find opportunity to learn the response of real ground from two gigantic earthquakes which occurred in less than six months from each other. From geotechnical engineering point of view, it is interesting to discuss the widespread liquefaction in natural sediments, repeated liquefaction within short period and further damage to earth structures which have been damaged in the previous earthquake. Following the earthquake, an intensive geotechnical reconnaissance was conducted to capture evidence and perishable data from this event. The team included the following members: Misko Cubrinovski (University of Canterbury, NZ, Team Leader), Susumu Yasuda (Tokyo Denki University, Japan, JGS Team Leader), Rolando Orense (University of Auckland, NZ), Kohji Tokimatsu (Tokyo Institute of Technology, Japan), Ryosuke Uzuoka (Tokushima University, Japan), Takashi Kiyota (University of Tokyo, Japan), Yasuyo Hosono (Toyohashi University of Technology, Japan) and Suguru Yamada (University of Tokyo, Japan).