Search

found 1517 results

Images, UC QuakeStudies

A photograph of the earthquake damage to a group of stores on Manchester Street including Peaches and Cream, the While You Wait Studio, Smith's Bookshop, Aji Global Grocery & Chocolateria and Curios Bric-a-Brac. Sections of the front wall have crumbled, the bricks falling to the footpath and damaging the awnings. Plastic fencing has been placed along the road as a cordon.

Other, National Library of New Zealand

Site of SCIRT, an alliance between CERA, Christchurch City Council, the NZTA, and companies involved in the rebuild. Includes information about SCIRT; news; works notices; and information about damage assessment and rebuilding of roads, fresh water, wastewater and stormwater networks.

Images, UC QuakeStudies

A photograph of earthquake-damaged buildings down Manchester Street. Crowds have gathered at the intersection with High Street in the distance, after evacuating their buildings during the 22 February 2011 earthquake. Rubble from the building to the left covers the road.

Images, UC QuakeStudies

A car drives onto the damaged Dallington bridge. The bridge has visibly moved relative to the road, there is a large gap at the side of the bridge, and the railings are warped. The photographer comments, "Dallington Bridge northern approach, Gayhurst Rd".

Images, UC QuakeStudies

A digitally manipulated image of a excavator claw tangled with reinforcing cable, with a damaged concrete building in the background. The photographer comments, "The monster destroying the earthquake broken buildings close to the Lyttelton tunnel".

Images, UC QuakeStudies

Damage to the Caxton Press building (left) and the adjoining building. In front is a pile of bricks, cordonned off with tape and road cones to keep the public away. Spray-painted codes show that the buildings have been checked by USAR.

Images, UC QuakeStudies

A car drives onto the damaged Dallington bridge. The bridge has visibly moved relative to the road, there is a large gap at the side of the bridge, and the railings are warped. The photographer comments, "Dallington Bridge northern approach, Gayhurst Rd".

Images, UC QuakeStudies

A man takes a photograph of the damaged Dallington bridge. The bridge has visibly moved relative to the road, there is a large gap at the side of the bridge, and the railings are warped. The photographer comments, "Dallington Bridge, north side".

Videos, UC QuakeStudies

Aerial footage of Christchurch after the 4 September 2010 earthquake. The footage shows the earthquake damage to Wizard Home Loans & Cartridge World on Riccarton Road, Harding's Chemist and Angus Donaldson Copy Service on Colombo Street, Para Rubber and Westende Jewellers on Manchester Street, The Loaded Hog on Cashel Street, St Mary & St Athanasios Church on Edgeware Road, The Daily Bagel on Victoria Street, the Laxmi Foodstore on Barbadoes Street, Television Services on Westminster Street, The Hat Shop on High Street, St Paul's Parish Church on Gayhurst Road, Sullivan Park on Galbraith Road, and Avonside Drive.

Images, UC QuakeStudies

Photograph captioned by BeckerFraserPhotos, "A sign on the fence of a red zoned property in Lower Styx Road. The sign reads, 'Browlee an (sic) Sutton R Clowns. Haven't got it right! $75 He rip off'. Many of the homeowners in this area believe that their homes should not be red zoned as the damage is much less than in other red zoned areas".

Videos, UC QuakeStudies

A video of an interview with Defence Counsel Jonathan Eaton about the police's refusal to allow diversion for alleged-looter Cornelius Arie Smith-Voorkamp. Smith-Voorkamp was arrested for allegedly taking light fittings from an earthquake-damaged property on Lincoln Road. Diversion was applied for on the basis that Smith-Voorkamp has autism, and his Asperger's syndrome involves a compulsion to take electrical fittings.

Images, UC QuakeStudies

A car stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole, lifting the back wheels off the ground. A line of other vehicles drive around the partially-submerged car. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".

Images, UC QuakeStudies

A car stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole, lifting the back wheels off the ground. A line of other vehicles drive around the partially-submerged car. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".

Research papers, University of Canterbury Library

We present preliminary observations on three waters impacts from the Mw7.8 14th November 2016 Kaikōura Earthquake on wider metropolitan Wellington, urban and rural Marlborough, and in Kaikōura township. Three waters systems in these areas experienced widespread and significant transient ground deformation in response to seismic shaking, with localised permanent ground deformation via liquefaction and lateral spreading. In Wellington, potable water quality was impacted temporarily by increased turbidity, and significant water losses occurred due to damaged pipes at the port. The Seaview and Porirua wastewater treatment plants sustained damage to clarifier tanks from water seiching, and increased water infiltration to the wastewater system occurred. Most failure modes in urban Marlborough were similar to the 2010-2011 Canterbury Earthquake Sequence; however some rural water tanks experienced rotational and translational movements, highlighting importance of flexible pipe connections. In Kaikōura, damage to reservoirs and pipes led to loss of water supply and compromised firefighting capability. Wastewater damage led to environmental contamination, and necessitated restrictions on greywater entry into the system to minimise flows. Damage to these systems necessitated the importation of tankered and bottled water, boil water notices and chlorination of the system, and importation of portaloos and chemical toilets. Stormwater infrastructure such as road drainage channels was also damaged, which could compromise condition of underlying road materials. Good operational asset management practices (current and accurate information, renewals, appreciation of criticality, good system knowledge and practical contingency plans) helped improve system resilience, and having robust emergency management centres and accurate Geographic Information System data allowed effective response coordination. Minimal damage to the wider built environment facilitated system inspections. Note Future research will include detailed geospatial assessments of seismic demand on these systems and attendant modes of failure, levels of service restoration, and collaborative development of resilience measures.

Research papers, University of Canterbury Library

This is an interim report from the research study performed within the NHRP Research Project “Impacts of soil liquefaction on land, buildings and buried pipe networks: geotechnical evaluation and design, Project 3: Seismic assessment and design of pipe networks in liquefiable soils”. The work presented herein is a continuation of the comprehensive study on the impacts of Christchurch earthquakes on the buried pipe networks presented in Cubrinovski et al. (2011). This report summarises the performance of Christchurch City’s potable water, waste water and road networks through the 2010-2011 Canterbury Earthquake Sequence (CES), and particularly focuses on the potable water network. It combines evidence based on comprehensive and well-documented data on the damage to the water network, detailed observations and interpretation of liquefaction-induced land damage, records and interpretations of ground motion characteristics induced by the Canterbury earthquakes, for a network analysis and pipeline performance evaluation using a GIS platform. The study addresses a range of issues relevant in the assessment of buried networks in areas affected by strong earthquakes and soil liquefaction. It discusses performance of different pipe materials (modern flexible pipelines and older brittle pipelines) including effects of pipe diameters, fittings and pipeline components/details, trench backfill characteristics, and severity of liquefaction. Detailed breakdown of key factors contributing to the damage to buried pipes is given with reference to the above and other relevant parameters. Particular attention is given to the interpretation, analysis and modelling of liquefaction effects on the damage and performance of the buried pipe networks. Clear link between liquefaction severity and damage rate for the pipeline has been observed with an increasing damage rate seen with increasing liquefaction severity. The approach taken here was to correlate the pipeline damage to LRI (Liquefaction Resistance Index, newly developed parameter in Cubrinovski et al., 2011) which represents a direct measure for the soil resistance to liquefaction while accounting for the seismic demand through PGA. Key quality of the adopted approach is that it provides a general methodology that in conjunction with conventional methods for liquefaction evaluation can be applied elsewhere in New Zealand and internationally. Preliminary correlations between pipeline damage (breaks km-1), liquefaction resistance (LRI) and seismic demand (PGA) have been developed for AC pipes, as an example. Such correlations can be directly used in the design and assessment of pipes in seismic areas both in liquefiable and non-liquefiable areas. Preliminary findings on the key factors for the damage to the potable water pipe network and established empirical correlations are presented including an overview of the damage to the waste water and road networks but with substantially less detail. A comprehensive summary of the damage data on the buried pipelines is given in a series of appendices.

Research papers, University of Canterbury Library

Tsunami have the potential to cause significant disruptions to society, including damage to infrastructure, critical to the every-day operation of society. Effective risk management is required to reduce the potential tsunami impacts to them. Christchurch city, situated on the eastern coast of New Zealand’s South Island, is exposed to a number of far-field tsunami hazards. Although the tsunami hazard has been well identified for Christchurch city infrastructure, the likely impacts have not been well constrained. To support effective risk management a credible and realistic infrastructure impact model is required to inform risk management planning. The objectives of this thesis are to assess the impacts on Christchurch city infrastructure from a credible, hypothetical far-field tsunami scenario. To achieve this an impact assessment process is adopted, using tsunami hazard and exposure measures to determine asset vulnerability and subsequent impacts. However, the thesis identified a number of knowledge gaps in infrastructure vulnerability to tsunami. The thesis addresses this by using two approaches: a tsunami damage matrix; and the development of tsunami fragility functions. The tsunami damage matrix pools together tsunami impacts on infrastructure literature, and post-event field observations. It represents the most comprehensive ‘look-up’ resource for tsunami impacts to infrastructure to date. This damage matrix can inform the assessment of tsunami impacts on Christchurch city infrastructure by providing a measure of damage likelihood at various hazard intensities. A more robust approach to tsunami vulnerability of infrastructure are fragility functions, which are also developed in this thesis. These were based on post-event tsunami surveys of the 2011 ‘Tohoku’ earthquake tsunami in Japan. The fragility functions are limited to road and bridge infrastructure, but represent the highest resolution measure of vulnerability for the given assets. As well as providing a measure of damage likelihood for a given tsunami hazard intensity, these also indicate a level of asset damage. The impact assessment process, and synthesized vulnerability measures, are used to run tsunami impact models for Christchurch infrastructure to determine the probability of asset damage occurring and to determine if impact will reach or exceed a given damage state. The models suggest that infrastructure damage is likely to occur in areas exposed to tsunami inundation in this scenario, with significant damage identified for low elevation roads and bridges. The results are presented and discussed in the context of the risk management framework, with emphasis on using risk assessment to inform risk treatment, monitoring and review. In summary, this thesis A) advances tsunami vulnerability and impact assessment methodologies for infrastructure and B) provides a tsunami impact assessment framework for Christchurch city infrastructure which will inform infrastructure tsunami risk management for planners, emergency managers and lifelines groups.

Images, UC QuakeStudies

A photograph looking west down Hereford Street from the intersection with Manchester Street. Wire fencing has been placed on both sides of the street to cordon off earthquake-damaged buildings. To the right, bricks have spilled across the road and footpath.

Images, UC QuakeStudies

A photograph of a digger and workers in high-visibility gear outside a badly-damaged building on the corner of Gloucester Street and Manchester Street. The road is covered in building rubble and has been cordoned off with wire fencing.

Images, UC QuakeStudies

A photograph of a digger and workers in high-visibility gear outside a badly-damaged building on the corner of Gloucester Street and Manchester Street. The road is covered in building rubble and has been cordoned off with wire fencing.

Images, UC QuakeStudies

A damaged house teetering on the edge of the cliff in Sumner. Below, shipping containers along the edge of Peacock's Gallop protect the road from further rockfall. The photographer comments, "About four meters of the rock face collapsed on June 13 undermining several houses along the cliff top".

Images, UC QuakeStudies

The badly-damaged Arts Centre, viewed from Rolleston Avenue. The turret has been removed from the building and secured to a platform on the footpath. Wire fencing has been placed around the building as a cordon and there are many road cones directing traffic.