Landslides are significant hazards, especially in seismically-active mountainous regions, where shaking amplified by steep topography can result in widespread landsliding. These landslides present not only an acute hazard, but a chronic hazard that can last years-to-decades after the initial earthquake, causing recurring impacts. The Mw 7.8 Kaikōura earthquake caused more than 20,000 landslides throughout North Canterbury and resulted in significant damage to nationally significant infrastructure in the coastal transport corridor (CTC), isolating Kaikōura from the rest of New Zealand. In the years following, ongoing landsliding triggered by intense rainfall exacerbated the impacts and slowed the recovery process. However, while there is significant research on co-seismic landslides and their initial impacts in New Zealand, little research has explored the evolution of co-seismic landslides and how this hazard changes over time. This research maps landslides annually between 2013 and 2021 to evaluate the changes in pre-earthquake, co-seismic and post-earthquake rates of landsliding to determine how landslide hazard has changed over this time. In particular, the research explores how the number, area, and spatial distribution of landslides has changed since the earthquake, and whether post-earthquake mitigation works have in any way affected the long-term landslide hazard. Mapping of landslides was undertaken using open-source, medium resolution Landsat-8 and Sentinel-2 satellite imagery, with landslides identified visually and mapped as single polygons that capture both the source zone and deposit. Three study areas with differing levels of post-earthquake mitigation are compared: (i) the northern CTC, where the majority of mitigation was in the form of active debris removal; (ii) the southern CTC, where mitigation was primarily via passive protection measures; and (iii) Mount Fyffe, which has had no mitigation works since the earthquake. The results show that despite similar initial impacts during the earthquake, the rate of recovery in terms of landslide rates varies substantially across the three study areas. In Mount Fyffe, the number and area of landslides could take 45 and 22 years from 2021 respectively to return to pre-earthquake levels at the current rate. Comparatively, in the CTC, it could take just 5 years and 3-4 years from 2021 respectively. Notably, the fastest recovery in terms of landslide rates in the CTC was primarily located directly along the transport network, whereas what little recovery did occur in Mount Fyffe appeared to follow no particular pattern. Importantly, recovery rates in the northern CTC were notably higher than in the southern CTC, despite greater co-seismic impacts in the former. Combined, these results suggest the active, debris removal mitigation undertaken in the northern CTC may have had the effect of dramatically reducing the time for landslide rates to return to pre-earthquake levels. The role of slope angle and slope aspect were explored to evaluate if these observations could be driven by local differences in topography. The Mount Fyffe study area has higher slope angles than the CTC as a whole and landslides predominantly occurred on slightly steeper slopes than in the CTC. This may have contributed to the longer recovery times for landsliding in Mount Fyffe due to greater gravitational instability, however the observed variations are minor compared to the differences in recovery rates. In terms of slope aspect, landslides in Mount Fyffe preferentially occurred on north- and south-facing slopes whereas landslides in the CTC preferred the east- and south-facing slopes. The potential role of these differences in landslide recovery remains unclear but may be related to the propagation direction of the earthquake and the tracking direction of post-earthquake ex-tropical cyclones. Finally, landslides in the CTC are observed to be moving further away from the transport network and the number of landslides impacting the CTC decreased significantly since the earthquake. Nevertheless, the potential for further landslide reactivation remains. Therefore, despite the recovery in the CTC, it is clear that there is still risk of the transport network being impacted by further landsliding, at least for the next 3-5 yrs.
Orientation: Large-scale events such as disasters, wars and pandemics disrupt the economy by diverging resource allocation, which could alter employment growth within the economy during recovery. Research purpose: The literature on the disaster–economic nexus predominantly considers the aggregate performance of the economy, including the stimulus injection. This research assesses the employment transition following a disaster by removing this stimulus injection and evaluating the economy’s performance during recovery. Motivation for the study: The underlying economy’s performance without the stimulus’ benefit remains primarily unanswered. A single disaster event is used to assess the employment transition to guide future stimulus response for disasters. Research approach/design and method: Canterbury, New Zealand, was affected by a series of earthquakes in 2010–2011 and is used as a single case study. Applying the historical construction–economic relationship, a counterfactual level of economic activity is quantified and compared with official results. Using an input–output model to remove the economy-wide impact from the elevated activity reveals the performance of the underlying economy and employment transition during recovery. Main findings: The results indicate a return to a demand-driven level of building activity 10 years after the disaster. Employment transition is characterised by two distinct periods. The first 5 years are stimulus-driven, while the 5 years that follow are demand-driven from the underlying economy. After the initial period of elevated building activity, construction repositioned to its long-term level near 5% of value add. Practical/managerial implications: The level of building activity could be used to confidently assess the performance of regional economies following a destructive disaster. The study results argue for an incentive to redevelop the affected area as quickly as possible to mitigate the negative effect of the destruction and provide a stimulus for the economy. Contribution/value-add: This study contributes to a growing stream of regional disaster economics research that assesses the economic effect using a single case study.
The Canterbury earthquake sequence (2010-2011) was the most devastating catastrophe in New Zealand‘s modern history. Fortunately, in 2011 New Zealand had a high insurance penetration ratio, with more than 95% of residences being insured for these earthquakes. This dissertation sheds light on the functions of disaster insurance schemes and their role in economic recovery post-earthquakes. The first chapter describes the demand and supply for earthquake insurance and provides insights about different public-private partnership earthquake insurance schemes around the world. In the second chapter, we concentrate on three public earthquake insurance schemes in California, Japan, and New Zealand. The chapter examines what would have been the outcome had the system of insurance in Christchurch been different in the aftermath of the Canterbury earthquake sequence (CES). We focus on the California Earthquake Authority insurance program, and the Japanese Earthquake Reinsurance scheme. Overall, the aggregate cost of the earthquake to the New Zealand public insurer (the Earthquake Commission) was USD 6.2 billion. If a similar-sized disaster event had occurred in Japan and California, homeowners would have received only around USD 1.6 billion and USD 0.7 billion from the Japanese and Californian schemes, respectively. We further describe the spatial and distributive aspects of these scenarios and discuss some of the policy questions that emerge from this comparison. The third chapter measures the longer-term effect of the CES on the local economy, using night-time light intensity measured from space, and focus on the role of insurance payments for damaged residential property during the local recovery process. Uniquely for this event, more than 95% of residential housing units were covered by insurance and almost all incurred some damage. However, insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery; and that insurance payments contributed significantly to the process of local economic recovery after the earthquake. Yet, delayed payments were less affective in assisting recovery and cash settlement of claims were more effective than insurance-managed repairs. After the Christchurch earthquakes, the government declared about 8000 houses as Red Zoned, prohibiting further developments in these properties, and offering the owners to buy them out. The government provided two options for owners: the first was full payment for both land and dwelling at the 2007 property evaluation, the second was payment for land, and the rest to be paid by the owner‘s insurance. Most people chose the second option. Using data from LINZ combined with data from Stats NZ, the fourth chapter empirically investigates what led people to choose this second option, and how peer effect influenced the homeowners‘ choices. Due to climate change, public disclosure of coastal hazard information through maps and property reports have been used more frequently by local government. This is expected to raise awareness about disaster risks in local community and help potential property owners to make informed locational decision. However, media outlets and business sector argue that public hazard disclosure will cause a negative effect on property value. Despite this opposition, some district councils in New Zealand have attempted to implement improved disclosure. Kapiti Coast district in the Wellington region serves as a case study for this research. In the fifth chapter, we utilize the residential property sale data and coastal hazard maps from the local district council. This study employs a difference-in-difference hedonic property price approach to examine the effect of hazard disclosure on coastal property values. We also apply spatial hedonic regression methods, controlling for coastal amenities, as our robustness check. Our findings suggest that hazard designation has a statistically and economically insignificant impact on property values. Overall, the risk perception about coastal hazards should be more emphasized in communities.
A vehicle and caravan being unloaded from the HMNZS Canterbury. The Royal New Zealand Navy delivered machinery and equipment to Christchurch for use in the recovery effort after the Christchurch Earthquake.
The Christchurch City Council's control of the earthquake recovery plan has been taken out of its hands, to the delight of business leaders, but to the chagrin of some local councilors.
The Canterbury earthquakes of 2010-2012 have been generation shaping. People living and working in and around the city during this time have had their lives and social landscapes changed forever. The earthquake response, recovery and rebuild efforts have highlighted unheralded social strengths and vulnerabilities within individuals, organisations, communities and country writ large. It is imperative that the social sciences stand up to be counted amongst the myriad of academic research, commentary and analysis.
A truck carrying a generator being unloaded from the HMNZS Canterbury. The Royal New Zealand Navy delivered machinery and equipment to Christchurch for use in the recovery effort after the Christchurch Earthquake.
A truck carrying a generator being unloaded from the HMNZS Canterbury. The Royal New Zealand Navy delivered machinery and equipment to Christchurch for use in the recovery effort after the Christchurch Earthquake.
The Earthquake Recovery Authority is knocking on the door of every red and orange zone resident in Christchurch to check on their welfare and offer them temporary accommodation if they need it.
Gold Award, presented to Louis Brown (from Christchurch), student volunteer army media relations and all round motivater and leader. Pictured here with Vice-Chancellor Dr Rod Carr, Prime Minister John Key and Minister for Canterbury Earthquake Recovery Gerry Brownlee.
Gold Award recipient, Louis Brow (from Christchurch), student volunteer army media relations, and all round motivater and leader. Pictured here with Vice-Chancellor Dr Rod Carr, Prime Minister John Key and Minister for Canterbury Earthquake Recovery Gerry Brownlee.
Silver Awar, presented to Erin Jackson (from Christchurch), she acted as the Big Top manager during student volunteer army operations. Pictured here with Vice-Chancellor Dr Rod Carr, Prime Minister John Key and Minister for Canterbury Earthquake Recovery Gerry Brownlee.
Gold Award, Kohan McNabb (from Ruapuna), who helped to establish the student volunteer army by tying in UCSA resources. Pictured here with Vice-Chancellor Dr Rod Carr, Prime Minister John Key and Minister for Canterbury Earthquake Recovery Gerry Brownlee.
Silver Award presented to Erin Jackson (from Christchurch), she acted as the Big Top manager during student volunteer army operations. Pictured here with Vice-Chancellor Dr Rod Carr, Prime Minister John Key and Minister for Canterbury Earthquake Recovery Gerry Brownlee.
A blog post from US Ambassador to New Zealand and Samoa, David Huebner, titled, "Dealing with Post-Quake Stress".
The Earthquake Recovery Minister, Gerry Brownlee, says he is confident that Fletchers is vigilant about fraud and is doing what it can to prevent it in the Christchurch rebuild after accusations from New Zealand First.
Nick Rogers, project director, Canterbury Land Assessment for Tonkin & Taylor. Tonkin & Taylor is the environmental and engineering consultancy doing the Canterbury land damage assessment work for EQC and the Canterbury Earthquake Recovery Authority.
Nat's been working on Earthquake relief in Christchurch with the development of the Christchurch Recovery Map and when not doing that, he's been looking at the iPad II, 3D Printers for schools, anti-lasers and other cutting edge tech.
Some Christchurch residents say the Christchurch City Council has been too slow to resolve the threat of rock fall to their homes, and they now hope the Canterbury Earthquake Recovery Authority will take over the job.
The Earthquake Recovery Minister, Gerry Brownlee, has made plain his frustration with the performance of the Christchurch City Council, calling the mayor, Bob Parker, a clown and saying that he's at the end of his tether.
An entry from Jennifer Middendorf's blog for 10 May 2011 entitled, "Wobbling again".
An entry from Ruth Gardner's blog for 2 March 2011 entitled, "Day 9, 10am - inside the Christchurch cordon".
A story submitted by David Hopkins to the QuakeStories website.
A story submitted by Greg Cole to the QuakeStories website.
A story submitted by Scott Thomas to the QuakeStories website.
A pdf transcript of Belle's earthquake story, captured by the UC QuakeBox project.
A photograph of a sign reading, "Christchurch Economic Recovery Abandoned - to red tape". The photograph is captioned by BeckerFraserPhotos, "Sign seen on a fence near the corner of St Asaph Street and High Street".
A PDF copy of a publication about rebuilding health and wellbeing in greater Christchurch. The publication was produced by CERA in June 2014.
A video of the open forum at the 2016 Seismics in the City Conference, facilitated by Brendon Burns, Communications Consultant at Brendon Burns and Associates.
Eve Welch (UC Photographic Services), Minister for Canterbury Earthquake Recovery Gerry Brownlee, Deputy Vice-Chancellor Ian Town, Vice-Chancellor Dr Rod Carr, Prime Minister John Key, Mayor Bob Parker and and Roger Sutton from CERA at the Community Engagement Awards 2011.