
Terminus calving of icebergs is a common mass-loss mechanism from water-terminating glaciers globally, including the lake-calving glaciers in New Zealand’s central Southern Alps. Calving rates can increase dramatically in response to increases in ice velocity and/or retreat of the glacier margin. Here, we describe a large calving event (c. 4.5 × 106 m3) observed at Tasman Glacier, which initiated around 30 min after the MW 6.2 Christchurch earthquake of 22 February 2011. The volume of this calving event was equalled or exceeded only once in a subsequent 13-month-long study. While the temporal association with the earthquake remains intriguing, the effects of any preconditioning factors remain unclear.
The Civil Defense understanding of the role of radio in disaster tends to focus on its value in providing essential information during and after the event. However this role is compromised when a station’s premises are destroyed, or rendered inaccessible by official cordons. The Radio Quake study examines how radio stations in Christchurch managed to resume broadcasting in the aftermath of the earthquake of February 22, 2011. In New Zealand’s heavily networked and commercialised radio environment there is a significant disparity between networked and independent stations’ broadcast commitments and resourcing. All Christchurch radio broadcasters were forced to improvise new locations, complex technical workarounds, and responsive styles of broadcasting after the February 22 earthquake, but the need to restore, or maintain, a full on air presence after the earthquake, rested entirely on often financially tenuous, locally owned and staffed independent radio: student, Iwi, community access, and local commercial stations. This paper will explore the resourcefulness and resilience of broadcasters riding out the aftershocks in hotels, motels, bedrooms, and a horse truck, using digital technologies in new ways to reimagine the practice of radio in Christchurch.
A wreath from the Singapore Contingent lying on a table in the memorial tent at the Botanic Gardens. The tent was set up for people who wanted to make a tribute to those who lost their lives during the Canterbury earthquakes. A note on the wreath reads, "The Singapore Contingent wishes to express our deepest sympathies and condolences to the people of Christchurch, New Zealand and all who have lost their lives during the 22nd February 2011 earthquake. Our hearts and thoughts are with you. From the men and women of the Singapore Contingent assisting with rescue and relief efforts in Christchurch".
Text top left reads 'Downsizemic activity' and a seismic graph zigzags wildly but gradually tails off into the words 'Interest rates' which take a serious downwards trend. Context - The Christchurch earthquakes of 4 September 2010 and 22 February 2011 which have had an impact on an already stagnating economy. The Reserve Bank has made a relatively large 50-point cut in its benchmark interest rate, the Official Cash Rate (from 3% to 2.5 per cent). Critics say that inflation is already running unacceptably high and there is a threat of much higher inflation in a year or two when the rebuilding of Christchurch begins to put pressure on limited resources. The Reserve Bank acknowledged these factors, but it has chosen instead to focus on the immediate impact of the earthquake on the economy and particularly on all-important business and consumer sentiment. (Press editorial 12 March 2011) Quantity: 1 digital cartoon(s).
A video about the reopening of the trams in Christchurch after the 22 February 2011 earthquake. The video includes an interview with tram driver Brian Erikson. Erikson talks about taking a job at a supermarket while the trams were closed, and the feeling he gets when he drives the trams. The video also includes an interview with Syleyman Sekman, whose son, Jubiter Ubukata Sekman, could not sleep because he was so excited to ride the trams again.
The devastating magnitude M6.3 earthquake, that struck the city of Christchurch at 12:51pm on Tuesday 22 February 2011, caused widespread damage to the lifeline systems. Following the event, the Natural Hazard Research Platform (NHRP) of New Zealand funded a short-term project “Recovery of Lifelines” aiming to: 1) coordinate the provision of information to meet lifeline short-term needs; and to 2) facilitate the accessibility to lifelines of best practice engineering details, along with hazards and vulnerability information already available from the local and international scientific community. This paper aims to briefly summarise the management of the recovery process for the most affected lifelines systems, including the electric system, the road, gas, and the water and wastewater networks. Further than this, the paper intends to discuss successes and issues encountered by the “Recovery of Lifelines” NHRP project in supporting lifelines utilities.
Text above the image reads 'Time capsules unearthed in Christchurch' A man reads a newspaper which says 'Petrol is so cheap you can actually afford to run one of these new-fangled motor cars...' Context - when a bronze statue of Christchurch founder John Robert Godley, which stood in Cathedral Square, toppled during the Christchurch earthquake of 22 February 2011, a crane driver clearing rubble discovered two time capsules. One is a small glass capsule with a hand-written letter on gold parchment inside, while the other is a large metal-like object, yet to be opened. A Nelson newspaper 'The Colonist' in an article published in 1918, about the time capsule in Christchurch said, "This statute of John Robert Godley executed by Thomas Woolner was erected in the west side of the Cathedral Square by the Provincial Government of Canterbury, and unveiled by the late Sir Charles Christopher Bowen on August 6 1867, it was moved to this site in March 1918." The man in the cartoon reads a bout the cost of petrol being incredibly cheap and thinks it refers to today's prices. Quantity: 1 digital cartoon(s).
In the period between September 2010 and December 2011, Christchurch (New Zealand) and its surroundings were hit by a series of strong earthquakes including six significant events, all generated by local faults in proximity to the city: 4 September 2010 (Mw=7.1), 22 February 2011 (Mw=6.2), 13 June 2011 (Mw=5.3 and Mw=6.0) and 23 December 2011 (M=5.8 and (M=5.9) earthquakes. As shown in Figure 1, the causative faults of the earthquakes were very close to or within the city boundaries thus generating very strong ground motions and causing tremendous damage throughout the city. Christchurch is shown as a lighter colour area, and its Central Business District (CBD) is marked with a white square area in the figure. Note that the sequence of earthquakes started to the west of the city and then propagated to the south, south-east and east of the city through a set of separate but apparently interacting faults. Because of their strength and proximity to the city, the earthquakes caused tremendous physical damage and impacts on the people, natural and built environments of Christchurch. The 22 February 2011 earthquake was particularly devastating. The ground motions generated by this earthquake were intense and in many parts of Christchurch substantially above the ground motions used to design the buildings in Christchurch. The earthquake caused 182 fatalities, collapse of two multi-storey reinforced concrete buildings, collapse or partial collapse of many unreinforced masonry structures including the historic Christchurch Cathedral. The Central Business District (CBD) of Christchurch, which is the central heart of the city just east of Hagley Park, was practically lost with majority of its 3,000 buildings being damaged beyond repair. Widespread liquefaction in the suburbs of Christchurch, as well as rock falls and slope/cliff instabilities in the Port Hills affected tens of thousands of residential buildings and properties, and shattered the lifelines and infrastructure over approximately one third of the city area. The total economic loss caused by the 2010-2011 Christchurch earthquakes is currently estimated to be in the range between 25 and 30 billion NZ dollars (or 15% to 18% of New Zealand’s GDP). After each major earthquake, comprehensive field investigations and inspections were conducted to document the liquefaction-induced land damage, lateral spreading displacements and their impacts on buildings and infrastructure. In addition, the ground motions produced by the earthquakes were recorded by approximately 15 strong motion stations within (close to) the city boundaries providing and impressive wealth of data, records and observations of the performance of ground and various types of structures during this unusual sequence of strong local earthquakes affecting a city. This paper discusses the liquefaction in residential areas and focuses on its impacts on dwellings (residential houses) and potable water system in the Christchurch suburbs. The ground conditions of Christchurch including the depositional history of soils, their composition, age and groundwater regime are first discussed. Detailed liquefaction maps illustrating the extent and severity of liquefaction across Christchurch triggered by the sequence of earthquakes including multiple episodes of severe re-liquefaction are next presented. Characteristic liquefaction-induced damage to residential houses is then described focussing on the performance of typical house foundations in areas affected by liquefaction. Liquefaction impacts on the potable water system of Christchurch is also briefly summarized including correlation between the damage to the system, liquefaction severity, and the performance of different pipe materials. Finally, the characteristics of Christchurch liquefaction and its impacts on built environment are discussed in relation to the liquefaction-induced damage in Japan during the 11 March 2011 Great East Japan Earthquake.
This poster aims to present fragility functions for pipelines buried in liquefaction-prone soils. Existing fragility models used to quantify losses can be based on old data or use complex metrics. Addressing these issues, the proposed functions are based on the Christchurch network and soil and utilizes the Canterbury earthquake sequence (CES) data, partially represented in Figure 1. Figure 1 (a) presents the pipe failure dataset, which describes the date, location and pipe on which failures occurred. Figure 1 (b) shows the simulated ground motion intensity median of the 22nd February 2011 earthquake. To develop the model, the network and soil characteristics have also been utilized
Christchurch City has to be rebuilt after the earthquakes of 4 September 2010 and 22 February 2011. People are being invited to contribute ideas about how to rebuild on a city council website. A group of people look at ideas on computers; a boy comments that 'this one looks just like the old city' and his father comments 'but built fifty miles up the road!' A woman looks at what appears to be pre European Maori pa site and says 'Hone Harawira wants something pre-European!' Another woman looks at a map of the middle of the South Island and says 'Rodney Hide doesn't care as long as Christchurch combines with Timaru and Westport!' Context - Former ACT leader Rodney Hide in his role as Minister for Local Government likes 'supercities' and Hone Harawira has left the Maori Party, fed up with the compromises he believes they have to make to suit their coalition agreement with the National government. He seems to prefer a city that will reflect simpler pre-European times. Colour and black and white versions available Quantity: 2 digital cartoon(s).
The impact of the Canterbury earthquake sequence of 2010-12 and its aftermath has been enormous. This inventory lists some of the thousands of community-led groups and initiatives across the region that have developed or evolved as a result of the quake. This inventory is the third such inventory to have been produced. The Christchurch Earthquake Activity Inventory was released by Landcare Research in May 2011, three months after the devastating 22 February 2011 earthquake. The second inventory, entitled An Inventory of Community-led Recovery Initiatives in Canterbury, was collated by Bailey Peryman and Dr Suzanne Vallance (Lincoln University) approximately one year after the February earthquake. The research for this third inventory was undertaken over a four month period from June to September 2013, and was conducted primarily through online searches.This research was undertaken with funding support from the Natural Hazards Platform and GNS, New Zealand.
Local independent radio stations in Christchurch, New Zealand, had their operations severely disrupted by major earthquakes in September 2010 and February 2011. This article examines the experiences of three radio stations that were shut out of their central city premises by the cordon drawn around the city after the 22 February quake. One of the stations continued broadcasting automatically, while the others were unable to fully get back on air for several weeks afterwards. All of the stations had to manage access to workspaces, the emotional needs of staff and volunteers, the technical ability to broadcast, and the need to adapt content appropriately when back on air. For the locally based radio managers decisions had to be made about the future of the stations in a time of significant emotional, physical, and geological upheaval. The article explores how these radio stations were disrupted by the earthquake, and how they returned to air through new combinations and interconnections of people, workspace, technology, content and transmission.
A panel with Michael Bell, Steph Walker and Kiri Jarden. It’s almost 13 years since the devastating earthquake of 22 February 2011, which forced 70 percent of the Ōtautahi Christchurch CBD to be demolished. While the rebuild has been a slow and often difficult process in visions meeting reality, there is also much to celebrate in the city taking up the opportunity, through art and design, to remake it as a place for all.
The title is 'Gambling on the rise in Christchurch'. Several vignettes show two men running in the 'Porta-loo stakes (runs)'; people betting on the 'size of the next shake'; people betting on 'who will have the last chimney standing'; a man sitting over a pot on a little gas ring wondering 'How long will it take to boil a 3 minute egg... when it's minus 10 in the kitchen'; someone in a car wondering 'Whose street can wipe out the most engine sumps'; and someone wondering 'Which power company will be first to put people before profits'. Context: The way of things following the earthquakes of September 4 2010, 22 February 2011 and 13 June 2011. The Problem Gambling Foundation says it is concerned more Christchurch people are turning to gambling to combat stress from earthquakes. It says spending on pokie machines in Christchurch has risen by almost $4 million, going against a downward national trend. The foundation says the data released by the Department of Internal Affairs shows spending on gaming machines rose by more than $3,800,000 in Christchurch city to almost $23 million. (Radio NZ News 26 July 2011) Colour and black and white versions available Quantity: 2 digital cartoon(s).
Heathcote Valley school strong motion station (HVSC) consistently recorded ground motions with higher intensities than nearby stations during the 2010-2011 Canterbury earthquakes. For example, as shown in Figure 1, for the 22 February 2011 Christchurch earthquake, peak ground acceleration at HVSC reached 1.4 g (horizontal) and 2 g (vertical), the largest ever recorded in New Zealand. Strong amplification of ground motions is expected at Heathcote Valley due to: 1) the high impedance contrast at the soil-rock interface, and 2) the interference of incident and surface waves within the valley. However, both conventional empirical ground motion prediction equations (GMPE) and the physics-based large scale ground motions simulations (with empirical site response) are ineffective in predicting such amplification due to their respective inherent limitations.
Case study analysis of the 2010-2011 Canterbury Earthquake Sequence (CES), which particularly impacted Christchurch City, New Zealand, has highlighted the value of practical, standardised and coordinated post-earthquake geotechnical response guidelines for earthquake-induced landslides in urban areas. The 22nd February 2011 earthquake, the second largest magnitude event in the CES, initiated a series of rockfall, cliff collapse and loess failures around the Port Hills which severely impacted the south-eastern part of Christchurch. The extensive slope failure induced by the 22nd February 200 earthquake was unprecedented; and ground motions experienced significantly exceeded the probabilistic seismic hazard model for Canterbury. Earthquake-induced landslides initiated by the 22nd February 2011 earthquake posed risk to life safety, and caused widespread damage to dwellings and critical infrastructure. In the immediate aftermath of the 22nd February 2011 earthquake, the geotechnical community responded by deploying into the Port Hills to conduct assessment of slope failure hazards and life safety risk. Coordination within the voluntary geotechnical response group evolved rapidly within the first week post-earthquake. The lack of pre-event planning to guide coordinated geotechnical response hindered the execution of timely and transparent management of life safety risk from coseismic landslides in the initial week after the earthquake. Semi-structured interviews were conducted with municipal, management and operational organisations involved in the geotechnical response during the CES. Analysis of interview dialogue highlighted the temporal evolution of priorities and tasks during emergency response to coseismic slope failure, which was further developed into a phased conceptual model to inform future geotechnical response. Review of geotechnical responses to selected historical earthquakes (Northridge, 1994; Chi-Chi, 1999; Wenchuan, 2008) has enabled comparison between international practice and local response strategies, and has emphasised the value of pre-earthquake preparation, indicating the importance of integration of geotechnical response within national emergency management plans. Furthermore, analysis of the CES and international earthquakes has informed pragmatic recommendations for future response to coseismic slope failure. Recommendations for future response to earthquake-induced landslides presented in this thesis include: the integration of post-earthquake geotechnical response with national Civil Defence and Emergency Management; pre-earthquake development of an adaptive management structure and standard slope assessment format for geotechnical response; and emergency management training for geotechnical professionals. Post-earthquake response recommendations include the development of geographic sectors within the area impacted by coseismic slope failure, and the development of a GIS database for analysis and management of data collected during ground reconnaissance. Recommendations provided in this thesis aim to inform development of national guidelines for geotechnical response to earthquake-induced landslides in New Zealand, and prompt debate concerning international best practice.
During 2010 and 2011, major earthquakes caused widespread damage and the deaths of 185 people in the city of Christchurch. Damaged school buildings resulted in state intervention which required amendment of the Education Act of 1989, and the development of ‘site sharing agreements’ in undamaged schools to cater for the needs of students whose schools had closed. An effective plan was also developed for student assessment through establishing an earthquake impaired derived grade process. Previous research into traditional explanations of educational inequalities in the United Kingdom, the United States of America, and New Zealand were reviewed through various processes within three educational inputs: the student, the school and the state. Research into the impacts of urban natural disasters on education and education inequalities found literature on post disaster education systems but nothing could be found that included performance data. The impacts of the Canterbury earthquakes on educational inequalities and achievement were analysed over 2009-2012. The baseline year was 2009, the year before the first earthquake, while 2012 is seen as the recovery year as no schools closed due to seismic events and there was no state intervention into the education of the region. National Certificate of Educational Achievement (NCEA) results levels 1-3 from thirty-four secondary schools in the greater Christchurch region were graphed and analysed. Regression analysis indicates; in 2009, educational inequalities existed with a strong positive relationship between a school’s decile rating and NCEA achievement. When schools were grouped into decile rankings (1-10) and their 2010 NCEA levels 1-3 results were compared with the previous year, the percentage of change indicates an overall lower NCEA achievement in 2010 across all deciles, but particularly in lower decile schools. By contrast, when 2011 NCEA results were compared with those of 2009, as a percentage of change, lower decile schools fared better. Non site sharing schools also achieved higher results than site sharing schools. State interventions, had however contributed towards student’s achieving national examinations and entry to university in 2011. When NCEA results for 2012 were compared to 2009 educational inequalities still exist, however in 2012 the positive relationship between decile rating and achievement is marginally weaker than in 2009. Human ethics approval was required to survey one Christchurch secondary school community of students (aged between 12 and 18), teachers and staff, parents and caregivers during October 2011. Participation was voluntary and without incentives, 154 completed questionnaires were received. The Canterbury earthquakes and aftershocks changed the lives of the research participants. This school community was displaced to another school due to the Christchurch earthquake on 22 February 2011. Research results are grouped under four geographical perspectives; spatial impacts, socio-economic impacts, displacement, and health and wellbeing. Further research possibilities include researching the lag effects from the Canterbury earthquakes on school age children.
Finance Minister Bill English holds a large axe that represents the 'budget' and says 'I wanted to retrieve all my spending tools, but, sadly, with allotted time short, I could only grab this!..' He is standing outside the barrier that surrounds the Christchurch CBD. Context - The Christchurch central business district has been largely out of bounds to anyone but those dealing with the after-effects of the earthquake of February 22 but business owners have been allowed restricted access to retrieve gear and belongings. The 2011 budget looks as though it will be focused on paring everything down because of the sad state of New Zealand's economy at present (made worse by the need to rebuild Christchurch), hence the axe. Quantity: 1 digital cartoon(s).
This paper discusses the seismic performance of the standard RC office building in Christchurch that is given as a structural design example in NZS3101, the concrete structures seismic standard in New Zealand. Firstly the push-over analysis was carried out to evaluate the lateral load carrying capacity of the RC building and then to compare that carrying capacity with the Japanese standard law. The estimated figures showed that the carrying capacity of the New Zealand standard RC office building of NZS3101:2006 was about one third of Japanese demanded carrying capacity. Secondly, time history analysis of the multi-mass system was performed to estimate the maximum response story drift angle using recorded ground motions. Finally, a three-dimensional analysis was carried out to estimate the response of the building to the 22nd February, 2011 Canterbury earthquake. The following outcomes were obtained. 1) The fundamental period of the example RC building is more than twice that of Japanese simplified calculation, 2) The example building’s maximum storey drift angle reached 2.5% under the recorded ground motions. The main purpose of this work is to provide background information of seismic design practice for the reconstruction of Christchurch.
Thousands of Christchurch refugees have poured into Timaru since the earthquake on February 22, boosting its population by nearly 20 per cent. Social services are giving out hundreds of food parcels, blankets, toiletries and clothes every day as well as finding accommodation for people who have turned up in town with nothing. Major Dean Herring of the Salvation Army in Timaru has been helping evacuees find places to live as well as dealing with the huge piles of donated goods.
This paper shows an understanding of the availability of resources in post-disaster reconstruction and recovery in Christchurch, New Zealand following its September 4, 2010 and February 22, 2011 earthquakes. Overseas experience in recovery demonstrates how delays and additional costs may incur if the availability of resources is not aligned with the reconstruction needs. In the case of reconstruction following Christchurch earthquakes, access to normal resource levels will be insufficient. An on-line questionnaire survey, combined with in-depth interviews was used to collect data from the construction professionals that had been participated in the post-earthquake reconstruction. The study identified the resources that are subject to short supply and resourcing challenges that are currently faced by the construction industry. There was a varied degree of impacts felt by the surveyed organisations from resource shortages. Resource pressures were primarily concentrated on human resources associated with structural, architectural and land issues. The challenges that may continue playing out in the longer-term reconstruction of Christchurch include limited capacity of the construction industry, competition for skills among residential, infrastructure and commercial sectors, and uncertainties with respect to decision making. Findings provide implications informing the ongoing recovery and rebuild in New Zealand. http://www.iiirr.ucalgary.ca/Conference-2012
A poster advertising performers Maryrose Crook, Purple Pilgrims and Thje. The photographer comments, "Maryrose Crook, Purple Pilgrims, Thje. Saturday 26 Feb (2011). HSP 9PM $5. HSP stands for High Street Project. Here is the introduction for her concert 'Maryrose Crook's spectral voice and calenture tunes float through New Zealand giants, The Renderers' psychic country-punk and splatter rock, and emerge in her solo encounters with horripilated grace and filigree menace. Purple pilgrims' wraithish hymns evolve through a braided field of curled nautical drone and distant littoral roar, abstract thrums and change-rung celestial rustle'. She was supposed to perform on 26 February, but I am guessing the concert was cancelled due to the major earthquake in Christchurch on the 22nd. The horrendous quake made the venue at 84 Lichfield Street out of limits due to it being in the dangerous earthquake red zone. It looks like she next performed on the 17 May at the Loons in Lyttelton".
The best interviews from Radio New Zealand Sport for the week ending Friday 27 May. This week, the New Zealand footballers head for the United States this weekend for the first of two friendlies and we hear from the man who's likely to stand in for the regular skipper Ryan Nelsen. And in Nelsen's home town, we talk to the director of the Christchurch marathon which looked as if it would have to be cancelled after the earthquake on the 22nd of February Another top All Black has re-signed with the New Zealand Rugby Union - the head coach Graham Henry gives his views on what Richie McCaw's decision means while the captain explains why he's staying when others are going. We'll also hear from one of the standout players in the Highlanders team which continues to mock pre-season wooden spoon predictions. Extra Time - a weekly show from Radio New Zealand Sport which provides extended interviews and comment from issues arising from the sporting week.
The last seven years have seen southern New Zealand a ected by several large and damaging earthquakes: the moment magnitude (MW) 7.8 Dusky Sound earthquake on 15 July 2009, the MW 7.1 Dar eld (Canterbury) earthquake on 4 September 2010, and most notably the MW 6.2 Christchurch earthquake on 22 February 2011 and the protracted aftershock sequence. In this thesis, we address the postseismic displacement produced by these earthquakes using methods of satellite-based geodetic measurement, known as Interferometric Synthetic Aperture Radar (InSAR) and Global Positioning System (GPS), and computational modelling. We observe several ground displacement features in the Canterbury and Fiordland regions during three periods: 1) Following the Dusky Sound earthquake; 2) Following the Dar eld earthquake and prior to the Christchurch earthquake; and 3) Following the Christchurch earthquake until February 2015. The ground displacement associated with postseismic motion following the Dusky Sound earthquake has been measured by continuous and campaign GPS data acquired in August 2009, in conjunction with Di erential Interferometric Synthetic Aperture Radar (DInSAR) observations. We use an afterslip model, estimated by temporal inversion of geodetic data, with combined viscoelastic rebound model to account for the observed spatio-temporal patterns of displacement. The two postseismic processes together induce a signi cant displacement corresponding to principal extensional and contractual strain rates of the order of 10⁻⁷ and 10⁻⁸ yr⁻¹ respectively, across most of the southern South Island. We also analyse observed postseismic displacement following the Dusky Sound earthquake using a new inversion approach in order to describe afterslip in an elasticviscoelastic medium. We develop a mathematical framework, namely the "Iterative Decoupling of Afterslip and Viscoelastic rebound (IDAV)" method, with which to invert temporally dense and spatially sparse geodetic observations. We examine the IDAV method using both numerical and analytical simulations of Green's functions. For the post-Dar eld time interval, postseismic signals are measured within approximately one month of the mainshock. The dataset used for the post-Dar eld displacement spans the region surrounding previously unrecognised faults that ruptured during the mainshock. Poroelastic rebound in a multi-layered half-space and dilatancy recovery at shallow depths provide a satisfactory t with the observations. For the post-Christchurch interval, campaign GPS data acquired in February 2012 to February 2015 in four successive epochs and 66 TerraSAR-X (TSX) SAR acquisitions in descending orbits between March 2011 and May 2014 reveal approximately three years of postseismic displacement. We detect movement away from the satellite of ~ 3 mm/yr in Christchurch and a gradient of displacement of ~ 4 mm/yr across a lineament extending from the westernmost end of the Western Christchurch Fault towards the eastern end of the Greendale East Fault. The postseismic signals following the Christchurch earthquake are mainly accounted for by afterslip models on the subsurface lineament and nearby faults.
A video about businesses in the Christchurch central city Red Zone. The Red Zone has now been renamed the Rebuild Zone. The video shows businesses which have remained untouched since the 22 February 2011 earthquake, including the Camelot Hotel and the i-SITE visitor centre in Cathedral Square, Subway on High Street, Jeans West on High Street, Time Zone on Colombo Street, Comics Compulsion on Manchester Street, Mortgage Solutions mortgage brokers on the corner of Hereford and Manchester Streets, Pocha Bar and Restaurant off Lichfield Street, and a fabric store on Lichfield Street.
Active faults capable of generating highly damaging earthquakes may not cause surface rupture (i.e., blind faults) or cause surface ruptures that evade detection due to subsequent burial or erosion by surface processes. Fault populations and earthquake frequency-‐magnitude distributions adhere to power laws, implying that faults too small to cause surface rupture but large enough to cause localized strong ground shaking densely populate continental crust. The rupture of blind, previously undetected faults beneath Christchurch, New Zealand in a suite of earthquakes in 2010 and 2011, including the fatal 22 February 2011 moment magnitude (Mw) 6.2 Christchurch earthquake and other large aftershocks, caused a variety of environmental impacts, including major rockfall, severe liquefaction, and differential surface uplift and subsidence. All of these effects occurred where geologic evidence for penultimate effects of the same nature existed. To what extent could the geologic record have been used to infer the presence of proximal, blind and / or unidentified faults near Christchurch? In this instance, we argue that phenomena induced by high intensity shaking, such as rock fragmentation and rockfall, revealed the presence of proximal active faults in the Christchurch area prior to the recent earthquake sequence. Development of robust earthquake shaking proxy datasets should become a higher scientific priority, particularly in populated regions.
On 4 September 2010, a 7.1 magnitude earthquake struck near Darfield, 40 kilometres west of Christchurch, New Zealand. The quake caused significant damage to land and buildings nearby, with damage extending to Christchurch city. On 22 February 2011, a 6.3 magnitude earthquake struck Christchurch, causing extensive and significant damage across the city and with the loss of 185 lives. Years on from these events, occasional large aftershocks continue to shake the region. Two main entomological collections were situated within close proximity to the 2010/11 Canterbury earthquakes. The Lincoln University Entomology Research Collection, which is housed on the 5th floor of a 7 storey building, was 27.5 km from the 2010 Darfield earthquake epicentre. The Canterbury Museum Entomology Collection, which is housed in the basement of a multi-storeyed heritage building, was 10 km from the 2011 Christchurch earthquake epicentre. We discuss the impacts of the earthquakes on these collections, the causes of the damage to the specimens and facilities, and subsequent efforts that were made to prevent further damage in the event of future seismic events. We also discuss the wider need for preparedness against the risks posed by natural disasters and other catastrophic events.
A video of a presentation by Professor David Johnston during the fourth plenary of the 2016 People in Disasters Conference. Johnston is a Senior Scientist at GNS Science and Director of the Joint Centre for Disaster Research in the School of Psychology at Massey University. The presentation is titled, "Understanding Immediate Human Behaviour to the 2010-2011 Canterbury Earthquake Sequence, Implications for injury prevention and risk communication".The abstract for the presentation reads as follows: The 2010 and 2011 Canterbury earthquake sequences have given us a unique opportunity to better understand human behaviour during and immediately after an earthquake. On 4 September 2010, a magnitude 7.1 earthquake occurred near Darfield in the Canterbury region of New Zealand. There were no deaths, but several thousand people sustained injuries and sought medical assistance. Less than 6 months later, a magnitude 6.2 earthquake occurred under Christchurch City at 12:51 p.m. on 22 February 2011. A total of 182 people were killed in the first 24 hours and over 7,000 people injured overall. To reduce earthquake casualties in future events, it is important to understand how people behaved during and immediately after the shaking, and how their behaviour exposed them to risk of death or injury. Most previous studies have relied on an analysis of medical records and/or reflective interviews and questionnaire studies. In Canterbury we were able to combine a range of methods to explore earthquake shaking behaviours and the causes of injuries. In New Zealand, the Accident Compensation Corporation (a national health payment scheme run by the government) allowed researchers to access injury data from over 9,500 people from the Darfield (4 September 2010) and Christchurch (22 February 2011 ) earthquakes. The total injury burden was analysed for demography, context of injury, causes of injury, and injury type. From the injury data inferences into human behaviour were derived. We were able to classify the injury context as direct (immediate shaking of the primary earthquake or aftershocks causing unavoidable injuries), and secondary (cause of injury after shaking ceased). A second study examined people's immediate responses to earthquakes in Christchurch New Zealand and compared responses to the 2011 earthquake in Hitachi, Japan. A further study has developed a systematic process and coding scheme to analyse earthquake video footage of human behaviour during strong earthquake shaking. From these studies a number of recommendations for injury prevention and risk communication can be made. In general, improved building codes, strengthening buildings, and securing fittings will reduce future earthquake deaths and injuries. However, the high rate of injuries incurred from undertaking an inappropriate action (e.g. moving around) during or immediately after an earthquake suggests that further education is needed to promote appropriate actions during and after earthquakes. In New Zealand - as in US and worldwide - public education efforts such as the 'Shakeout' exercise are trying to address the behavioural aspects of injury prevention.
Questions to Ministers and lt;br / and gt; and lt;br / and gt; 1. Hon ANNETTE KING to the Prime Minister: Is he satisfied that all systems set up pursuant to commitments he has given to assist residents following the Christchurch earthquake are appropriate and working? and lt;br / and gt; and lt;br / and gt; 2. DAVID BENNETT to the Minister of Finance: What do this morning's Reserve Bank economic forecasts show? and lt;br / and gt; and lt;br / and gt; 3. Hon DAVID CUNLIFFE to the Minister of Finance: By what amount has the Reserve Bank lowered the official cash rate today, and what reason has the Bank given for this action? and lt;br / and gt; and lt;br / and gt; 4. GARETH HUGHES to the Minister of Finance: What will be the impact of the recent fuel price rise on the New Zealand economy, including impacts on GDP, consumer spending and the current account? and lt;br / and gt; and lt;br / and gt; 5. Hon DAVID PARKER to the Acting Minister for Economic Development: Has he been advised by the Prime Minister whether his appointment as Acting Minister for Economic Development is temporary or expected to carry on to the election? and lt;br / and gt; and lt;br / and gt; 6. KATRINA SHANKS to the Minister of Transport: What action is the Government taking to improve Wellington's train network? and lt;br / and gt; and lt;br / and gt; 7. Hon DAMIEN O'CONNOR to the Prime Minister: Can he assure the families of those killed in the Pike River Mine disaster that Government funding will be available for the recovery of bodies, given the mine is now in receiver's hands. and lt;br / and gt; and lt;br / and gt; 8. COLIN KING to the Minister of Civil Defence: Is the Government satisfied with the provision of replacement toilets for earthquake-affected Christchurch residents? and lt;br / and gt; and lt;br / and gt; 9. CAROL BEAUMONT to the Minister of Women's Affairs: Can she outline a significant improvement for women initiated by the current Government? and lt;br / and gt; and lt;br / and gt; 10. ALLAN PEACHEY to the Minister of Education: What provisions have been made to ensure continuity of early childhood education and schooling in the Christchurch region since the 22 February earthquake? and lt;br / and gt; and lt;br / and gt; 11. Hon TREVOR MALLARD to the Minister for Communications and Information Technology: What advice did he receive on any perceived conflict of interest before he took part in the Cabinet decision that led to the deferral of the requirement for MediaWorks to pay its frequency licence to the Crown? and lt;br / and gt; and lt;br / and gt; 12. KANWALJIT SINGH BAKSHI to the Minister of Internal Affairs: What reports has he received on the progress of urban search and rescue and firefighter teams working in Christchurch following the 22 February earthquake?
Questions to Ministers 1. Hon ANNETTE KING to the Minister of Finance: When he said recently "where the Government does have some influence, we are working hard to keep prices low", which prices was he referring to? 2. DAVID BENNETT to the Minister of Finance: What are some of the likely impacts on the Government's finances of the Christchurch earthquake? 3. Hon DAVID PARKER to the Acting Minister for Economic Development: Does he stand by all his statements on economic development? 4. Dr JACKIE BLUE to the Minister for ACC: How many claims has ACC received since the tragic earthquake on 22 February and what steps has the Government taken to facilitate prompt compensation for those seriously injured? 5. Hon MARYAN STREET to the Minister of Civil Defence: What is the basis for according priority to entry of the red zone in the Christchurch central business district? 6. NIKKI KAYE to the Minister for Social Development and Employment: What support is the Government giving to non-government organisations in Christchurch affected by the earthquake? 7. Hon TREVOR MALLARD to the Prime Minister: What role did he or his department play in the decision to shift the Rugby World Cup quarter finals, from AMI Stadium to Eden Park? 8. JACQUI DEAN to the Minister of Corrections: What progress has been made toward the Government's commitment to encourage private sector investment in the New Zealand corrections system? 9. Hon DARREN HUGHES to the Minister for Tertiary Education: What specific policy changes has the Government made to increase the number of apprenticeships and other building-skills training programmes since the September Canterbury earthquake? 10. SUE KEDGLEY to the Minister of Commerce: Will he use his powers under Part 4 of the Commerce Act 1986 to call for an investigation into the dairy wholesale and retail milk market, following the release of the Ministry of Agriculture and Forestry's review of the domestic milk market in New Zealand; if not, why not? 11. CAROL BEAUMONT to the Minister of Women's Affairs: Does she support the retention of the stand-alone and independent Ministry of Women's Affairs? 12. JOHN HAYES to the Minister of Agriculture: What steps has the Government recently made to progress agricultural greenhouse gas research?