Search

found 134 results

Images, UC QuakeStudies

A photograph of a young child at the public launch event for Agropolis, which was part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of a young child at the public launch event for Agropolis, which was part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of a speech being given at the public launch of Agropolis, which was part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Research papers, University of Canterbury Library

This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.

Research papers, University of Canterbury Library

This thesis documents the development and demonstration of an assessment method for analysing earthquake-related damage to concrete waste water gravity pipes in Christchurch, New Zealand, following the 2010-2011 Canterbury Earthquake Sequence (CES). The method is intended to be internationally adaptable to assist territorial local authorities with improving lifelines infrastructure disaster impact assessment and improvements in resilience. This is achieved through the provision of high-resolution, localised damage data, which demonstrate earthquake impacts along the pipe length. The insights gained will assist decision making and the prioritisation of resources following earthquake events to quickly and efficiently restore network function and reduce community impacts. The method involved obtaining a selection of 55 reinforced concrete gravity waste water pipes with available Closed-Circuit Television (CCTV) inspection footage filmed before and after the CES. The pipes were assessed by reviewing the recordings, and damage was mapped to the nearest metre along the pipe length using Geographic Information Systems. An established, systematic coding process was used for reporting the nature and severity of the observed damage, and to differentiate between pre-existing and new damage resulting from the CES. The damage items were overlaid with geospatial data such as Light Detection and Ranging (LiDAR)-derived ground deformation data, Liquefaction Resistance Index data and seismic ground motion data (Peak Ground acceleration and Peak Ground Velocity) to identify potential relationships between these parameters and pipe performance. Initial assessment outcomes for the pipe selection revealed that main pipe joints and lateral connections were more vulnerable than the pipe body during a seismic event. Smaller diameter pipes may also be more vulnerable than larger pipes during a seismic event. Obvious differential ground movement resulted in increased local damage observations in many cases, however this was not obvious for all pipes. Pipes with older installation ages exhibited more overall damage prior to a seismic event, which is likely attributable to increased chemical and biological deterioration. However, no evidence was found relating pipe age to performance during a seismic event. No evidence was found linking levels of pre-CES damage in a pipe with subsequent seismic performance, and seismic performance with liquefaction resistance or magnitude of seismic ground motion. The results reported are of limited application due to the small demonstration sample size, but reveal the additional level of detail and insight possible using the method presented in this thesis over existing assessment methods, especially in relation to high resolution variations along the length of the pipe such as localised ground deformations evidenced by LiDAR. The results may be improved by studying a larger and more diverse sample pool, automating data collection and input processes in order to improve efficiency and consider additional input such as pipe dip and cumulative damage over a large distance. The method is dependent on comprehensive and accurate pre-event CCTV assessments and LIDAR data so that post-event data could be compared. It is proposed that local territorial authorities should prioritise acquiring this information as a first important step towards improving the seismic resilience of a gravity waste water pipe network.

Audio, Radio New Zealand

The Tiwai Point Aluminium Smelter has stockpiled a thousand tonnes of hazardous waste near an eroding beach, A court ruling finds inmates at Auckland Women's Prison were treated in a cruel and degrading manner,We speak to some of those affected by the devastating earthquake that struck Christchurch ten years ago today.

Images, UC QuakeStudies

A photograph of Sharon McIver and Barnaby Bennett at the public launch of Agropolis, which was part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A piece of decorated furniture in the Words of Hope project. Messages can be seen, such as "Don't waste this chance Chch" and "CCC Councillors and CERA: Please please please open your minds and do things differently - what you do here will last generations - make a positive change".

Images, UC QuakeStudies

A photograph of the beginnings of a shed at Agropolis. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food. Agropolis was the venue for several events throughout FESTA 2013.

Images, UC QuakeStudies

A photograph of the beginnings of a shed at Agropolis. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food. Agropolis was the venue for several events throughout FESTA 2013.

Images, UC QuakeStudies

A photograph of Jessica Halliday of FESTA at the public launch event for Agropolis. The launch was part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

Pipes lead into a shipping container. The photographer comments, "In Christchurch containers are so very versatile: They are used as barricades, supports, homes, shops, art galleries, artworks, Malls, pubs and bars, Thai takeaways and now sewage works".

Images, UC QuakeStudies

A photograph of Jessica Halliday of FESTA giving a speech at the public launch of Agropolis. The launch was part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of plants in a raised garden bed at the public launch event for Agropolis, which was part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of a woman with soil in her hands, before the opening of Agropolis, an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food. Agropolis was the venue for several events throughout FESTA 2013.

Images, UC QuakeStudies

A photograph of Jessica Halliday of FESTA giving a speech at the public launch of Agropolis. The launch was part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of fresh bread, pickles and spreads on a table at Agropolis, for the public launch event as part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of a City Care truck delivering mulch to Agropolis before the public launch event. The launch was part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of fresh bread, pickles and spreads on a table at Agropolis, for the public launch event as part of FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, Canterbury Museum

One beige Campmaster portable chemical toilet made from a matte finished high-density polythene and comprising a 20 litre holding tank for waste product and a 10 litre water tank for flushing. Chemical toilets were distributed by the Christchurch City Council as one solution to the badly damaged sewerage system following the 22 February 2011 ea...

Images, UC QuakeStudies

A photograph of a freshly-made spread in a jar on a table at Agropolis, for the public launch event as part of FETSA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of people jumping in a pile of soil that has been placed on a white sheet, as part of the launch event of Agropolis during FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of people jumping in a pile of soil that has been placed on a white sheet, as part of the launch event of Agropolis during FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of people jumping in a pile of soil that has been placed on a white sheet, as part of the launch event of Agropolis during FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Images, UC QuakeStudies

A photograph of people jumping in a pile of soil that has been placed on a white sheet, as part of the launch event of Agropolis during FESTA 2013. Agropolis is an urban farm on the corner of High Street and Tuam Street. Organic waste from inner-city hospitality businesses is composted and used to grow food.

Audio, Radio New Zealand

A new research project will study the ongoing impact of "quake brain" on people's memory and other cognitive functions a decade after the Canterbury earthquakes; a Masterton print business that can't find a way to recycle its plastic waste has highlighted a national problem; a programme offering free period products for all school students is to be rolled out nationwide from June; and why don't we eat possum?

Images, UC QuakeStudies

A mural on the exposed wall of a building on Peterborough Street. This was a joint project between Gap Filler and the Flying Cup Cafe. The mural is a beach scene with a quote from Anne Frank, reading, "Isn't it wonderful that nobody need waste a single moment to improve the world", and incorporates pre-existing street art and posters.

Research papers, University of Canterbury Library

Elevated levels of trace elements in the environment are of great concern because of their persistence, and their high potential to harm living organisms. The exposure of aquatic biota to trace elements can lead to bioaccumulation, and toxicity can result. Furthermore, the transfer of these elements through food chains can result in exposure to human consumers. Sea-fill or coastal fill sites are among the major anthropogenic sources of trace elements to the surrounding marine environment. For example, in the Maldives, Thilafushi Island is a sea-fill site consisting of assorted municipal solid waste, with multiple potential sources of trace elements. However, there is limited data on environmental trace element levels in the Maldives, and although seafood is harvested from close to this site, there is no existing data regarding trace element levels in Maldivian diets. Following the Christchurch earthquakes of 2011,

Research papers, University of Canterbury Library

Disaster recovery is significantly affected by funding availability. The timeliness and quality of recovery activities are not only impacted by the extent of the funding but also the mechanisms with which funding is prioritised, allocated and delivered. This research addresses the impact of funding mechanisms on the effectiveness and efficiency of post-disaster demolition and debris management programmes. A qualitative assessment of the impacts on recovery of different funding sources and mechanisms was carried out, using the 2010 Canterbury Earthquake as well as other recent international events as case studies. The impacts assessed include: timeliness, completeness, environmental, economic and social impacts. Of the case studies investigated, the Canterbury Earthquake was the only disaster response to rely solely on a privatised approach to insurance for debris management. Due to the low level of resident displacement and low level of hazard in the waste, this was a satisfactory approach, though not ideal. This approach has led to greater organisational complexity and delays. For many other events, the potential community wide impacts caused by the prolonged presence of disaster debris means that publicly funded and centrally facilitated programmes appear to be the most common and effective method of managing disaster waste.