A video of an interview with New Zealand Fire Service Chief Executive and National Commander Paul Baxter, about the findings of the coronial inquest into the CTV building deaths. Coroner Gordon Matenga found that failures by the Fire Service and Urban Search and Rescue did not contribute to the deaths of eight students at the CTV site in the aftermath of the 22 February 2011 earthquake. Baxter talks about the importance of acknowledging the families of the deceased, and the changes and improvements that have been made by the New Zealand Fire Service since the collapse of the CTV building.
The Kaikoura earthquake in November 2016 highlighted the vulnerability of New Zealand’s rural communities to locally-specific hazard events, which generate regional and national scale impacts. Kaikoura was isolated with significant damage to both the east coast road (SH1) and rail corridor, and the Inland Road (Route 70). Sea bed uplift along the coast was significant – affecting marine resources and ocean access for marine operators engaged in tourism and harvesting, and recreational users. While communities closest to the earthquake epicentre (e.g., Kaikoura, Waiau, Rotherham and Cheviot) suffered the most immediate earthquake damage, the damage to the transport network, and the establishment of an alternative transport route between Christchurch and Picton, has significantly impacted on more distant communities (e.g., Murchison, St Arnaud and Blenheim). There was also considerable damage to vineyard infrastructure across the Marlborough region and damage to buildings and infrastructure in rural settlements in Southern Marlborough (e.g., Ward and Seddon).
This report forms part of a research project examining rural community resilience to natural hazard events, with a particular focus on transient population groups. A preliminary desktop and scoping exercise was undertaken to examine nine communities affected by the Kaikoura earthquake and to identify the variety of transient population groups that are commonly (and increasingly) found in rural New Zealand (see Wilson & Simmons, 2017). From this, four case study communities – Blenheim, Kaikoura, Waiau and St Arnaud – were selected to represent a range of settlement types. These communities varied in respect of social, economic and geographic features, including the presence of particular transient population groups, and earthquake impact. While the 2016 Kaikoura earthquake provided a natural hazard event on which to focus the research, the research interest was in long-term (and broad) community resilience, rather than short-term (and specific) response and recovery actions which occurred post-earthquake.
Christchurch Ōtautahi, New Zealand, is a city of myriad waterways and springs. Māori, the indigenous people of New Zealand, have water quality at the core of their cultural values. The city’s rivers include the Avon/Ōtākaro, central to the city centre’s aesthetic appeal since early settlement, and the Heathcote/Ōpāwaho. Both have been degraded with increasing urbanisation. The destructive earthquake sequence that occurred during 2010/11 presented an opportunity to rebuild significant areas of the city. Public consultation identified enthusiasm to rebuild a sustainable city. A sustainable water sensitive city is one where development is constructed with the water environment in mind. Water sensitive urban design applies at all scales and is a holistic concept. In Christchurch larger-scale multi-value stormwater management solutions were incorporated into rapidly developed greenfield sites on the city’s outskirts and in satellite towns, as they had been pre-earthquake. Individual properties on greenfield sites and within the city, however, continued to be constructed without water sensitive features such as rainwater tanks or living roofs. This research uses semi-structured interviews, policy analysis, and findings from local and international studies to investigate the benefits of building-scale WSUD and the barriers that have resulted in their absence. Although several inter-related barriers became apparent, cost, commonly cited as a barrier to sustainable development in general, was strongly represented. However, it is argued that the issue is one of mindset rather than cost. Solutions are proposed, based on international and national experience, that will demonstrate the benefits of adopting water sensitive urban design principles including at the building scale, and thereby build public and political support. The research is timely - there is still much development to occur, and increasing pressures from urban densification, population growth and climate change to mitigate.
An entry from Ruth Gardner's blog for 27 February 2011 entitled, "Day 6, 3pm - inside the Christchurch cordon".
An article from Army News, March 2011 titled, "Sappers Show Their Expertise in a City Under Siege".
Page 3 of Section A of the Christchurch Press, published on Thursday 28 June 2012.
Page 2 of Section A of the Christchurch Press, published on Saturday 10 November 2012.
While there are varying definitions of the term ‘social cohesion’, a number of common themes regularly surface to describe what cohesive societies look like. Previous studies using known indicators of social cohesion have often been conducted at the international level for cross-country comparison, while there has been less focus on social cohesion within countries. The purpose of this research is to identify if indicators of social cohesion can be used to map trends at the city level in order to draw meaningful conclusions, particularly in the aftermath of a natural disaster. Using known indicators of social cohesion and Christchurch City as the basis for this study, variations in social cohesion have been found within the city wards, that preceded but were affected by the events of the Canterbury earthquakes during 2010/11. These findings have significant policy implications for the future of Christchurch, as city leaders work towards the recovery of and subsequent rebuilding of communities.
National Manager Special Operations, New Zealand Fire Service, who lead the Urban Search and Rescue Teams in the aftermath of the Christchurch earthquake. He then lead the New Zealand USAR team which travelled to Northern Japan to assist after the earthquake and tsunami there.
Page 3 of Section A of the Christchurch Press, published on Wednesday 31 October 2012.
Page 3 of Section A of the Christchurch Press, published on Friday 2 November 2012.
Page 6 of Section A of the Christchurch Press, published on Friday 25 February 2011.
Christchurch's Graffiti House... This Cranford Street house was damaged in the earthquakes and is due for demolished this week but has been given a Graffiti Makeover by local Street Artists.
This report summarizes the development of a region-wide surficial soil shear wave velocity (Vs ) model based on the unique combination of a large high-spatial-density database of cone penetration test (CPT) logs in the greater Christchurch urban area (> 15, 000 logs as of 1 February 2014) and the Christchurch-specific empirical correlation between soil Vs and CPT data developed by McGann et al. [1, 2]. This model has applications for site characterization efforts via maps of time-averaged Vs over specific depths (e.g. Vs30, Vs10), and for numerical modeling efforts via the identification of typical Vs profiles for different regions and soil behaviour types within Christchurch. In addition, the Vs model can be used to constrain the near-surface velocities for the 3D seismic velocity model of the Canterbury basin [3] currently being developed for the purpose of broadband ground motion simulation. The general development of these region-wide near-surface Vs models includes the following general phases, with each discussed in separate chapters of this report. • An evaluation of the available CPT dataset for suitability, and the definition of other datasets and assumptions necessary to characterize the surficial sediments of the region to 30 m depth. • The development of time-averaged shear wave velocity (Vsz) surfaces for the Christchurch area from the adopted CPT dataset (and supplementary data/assumptions) using spatial interpolation. The Vsz surfaces are used to explore the characteristics of the near-surface soils in the regions and are shown to correspond well with known features of the local geology, the historical ecosystems of the area, and observations made following the 2010- 2011 Canterbury earthquakes. • A detailed analysis of the Vs profiles in eight subregions of Christchurch is performed to assess the variablity in the soil profiles for regions with similar Vsz values and to assess Vsz as a predictive metric for local site response. It is shown that the distrubution of soil shear wave velocity in the Christchurch regions is highly variable both spatially (horizontally) and with depth (vertically) due to the varied geological histories for different parts of the area, and the highly stratified nature of the nearsurface deposits. This variability is not considered to be greatly significant in terms of current simplified site classification systems; based on computed Vs30 values, all considered regions can be categorized as NEHRP sites class D (180 < Vs < 360 m/s) or E (Vs < 180 m/s), however, detailed analysis of the shear wave velocity profiles in different subregions of Christchurch show that the expected surficial site response can vary quite a bit across the region despite the relative similarity in Vs30
This topic was chosen in response to the devastation caused to Cathedral Square, Christchurch, New Zealand following earthquakes in 2010 and 2011. Working amongst the demolition bought to attention questions about how to re-conceive the square within the rebuilt city. In particular, it raised questions as to how a central square could be better integrated and experienced as a contemporary addition to Christchurch city. This thesis seeks to investigate the ways in which central squares can be better integrated with the contemporary city and how New Urbanist design principles can contribute toward this union. The research principally focuses on the physical and spatial integration of the square with the contemporary city. A drawing-based analysis of select precedent case studies helped to determine early on that overall integration of the contemporary square could be attributed to several interdependent criteria. The detailed studies are supplemented further with literature-based research that narrowed the criteria to five integrative properties. These are: identity, scale and proportion, use, connectivity and natural landscape. These were synthesised, in part, from the integrative New Urbanist movement and the emerging integrative side of the more contemporary Post Urbanist movement. The literature-based research revealed that a more inclusive approach toward New Urbanist and Post Urbanist design methodologies may also produce a more integrated and contemporary square. Three design case studies, using the redesign of Cathedral Square, were undertaken to test this hypothesis. The case studies found that overall, integration was reliant on a harmonious balance between the five integrative properties, concluding that squares can be better integrated with the contemporary city. Further testing of the third concept, which embraced an allied New Urbanist / Post Urbanist approach to design, found that New Urbanism was limited in its contribution toward the integration of the square.
Photograph captioned by Fairfax, "Urban Search and Rescue workers remove the insides of the historic MLC building built in 1906 on the corner of Manchester/Hereford Streets. The seven storey building will be demolished as it is at risk of collapsing".
Photograph captioned by Fairfax, "Urban Search and Rescue workers remove the insides of the historic MLC building built in 1906 on the corner of Manchester/Hereford Streets. The seven storey building will be demolished as it is at risk of collapsing".
Photograph captioned by Fairfax, "Urban Search and Rescue workers remove the insides of the historic MLC building built in 1906 on the corner of Manchester/Hereford Streets. The seven storey building will be demolished as it is at risk of collapsing".
Photograph captioned by Fairfax, "Urban Search and Rescue workers remove the insides of the historic MLC building built in 1906 on the corner of Manchester/Hereford Streets. The seven storey building will be demolished as it is at risk of collapsing".
Photograph captioned by Fairfax, "Urban Search and Rescue workers remove the insides of the historic MLC building built in 1906 on the corner of Manchester/Hereford Streets. The seven storey building will be demolished as it is at risk of collapsing".
Photograph captioned by Fairfax, "Urban Search and Rescue workers remove the insides of the historic MLC building built in 1906 on the corner of Manchester/Hereford Streets. The seven storey building will be demolished as it is at risk of collapsing".
Photograph captioned by Fairfax, "Urban Search and Rescue workers remove the insides of the historic MLC building built in 1906 on the corner of Manchester/Hereford Streets. The seven storey building will be demolished as it is at risk of collapsing".
Photograph captioned by Fairfax, "Urban Search and Rescue workers remove the insides of the historic MLC building built in 1906 on the corner of Manchester/Hereford Streets. The seven storey building will be demolished as it is at risk of collapsing".
Photograph captioned by Fairfax, "Urban Search and Rescue workers remove the insides of the historic MLC building built in 1906 on the corner of Manchester/Hereford Streets. The seven storey building will be demolished as it is at risk of collapsing".
Photograph captioned by Fairfax, "Urban Search and Rescue workers remove the insides of the historic MLC building built in 1906 on the corner of Manchester/Hereford Streets. The seven storey building will be demolished as it is at risk of collapsing".
Photograph captioned by Fairfax, "Urban Search and Rescue workers remove the insides of the historic MLC building built in 1906 on the corner of Manchester/Hereford Streets. The seven storey building will be demolished as it is at risk of collapsing".
Photograph captioned by Fairfax, "Urban Search and Rescue workers remove the insides of the historic MLC building built in 1906 on the corner of Manchester/Hereford Streets. The seven storey building will be demolished as it is at risk of collapsing".
Cities need places that contribute to quality of life, places that support social interaction. Wellbeing, specifically, community wellbeing, is influenced by where people live, the quality of place is important and who they connect with socially. Social interaction and connection can come from the routine involvement with others, the behavioural acts of seeing and being with others. This research consisted of 38 interviews of residents of Christchurch, New Zealand, in the years following the 2010-12 earthquakes. Residents were asked about the place they lived and their interactions within their community. The aim was to examine the role of neighbourhood in contributing to local social connections and networks that contribute to living well. Specifically, it focused on the role and importance of social infrastructure in facilitating less formal social interactions in local neighbourhoods. It found that neighbourhood gathering places and bumping spaces can provide benefit for living well. Social infrastructure, like libraries, parks, primary schools, and pubs are some of the places of neighbourhood that contributed to how well people can encounter others for social interaction. In addition, unplanned interactions were facilitated by the existence of bumping places, such as street furniture. The wellbeing value of such spaces needs to be acknowledged and factored into planning decisions, and local rules and regulations need to allow the development of such spaces.
The recent earthquakes in Canterbury have left thousands of Christchurch residents’ homeless or facing the possibility of homelessness. The New Zealand Government, so far, have announced that 5,100 homes in Christchurch will have to be abandoned as a result of earthquake damaged land (Christchurch City Council, 2011). They have been zoned red on the Canterbury Earthquake Recovery Authority (CERA) map and there are another 10,000 that have been zoned orange, awaiting a decision (Christchurch City Council, 2011). This situation has placed pressures on land developers and local authorities to speed up the process associated with the development of proposed subdivisions in Christchurch to accommodate residents in this situation (Tarrant, 2011).