Search

found 185 results

Images, UC QuakeStudies

A digitally manipulated image of the head of a digger resting on a pile of soil. The photographer comments, "You can go anywhere you like when you are a rock star".

Research papers, University of Canterbury Library

During the past two decades, the focus has been on the need to provide communities with structures that undergo minimal damage after an earthquake event while still being cost competitive. This has led to the development of high performance seismic resisting systems, and advances in design methodologies, in order respect this demand efficiently. This paper presents the experimental response of four pre-cast, post-tensioned rocking wall systems tested on the shake-table at the University of Canterbury. The wall systems were designed as a retrofit solution for an existing frame building, but are equally applicable for use in new design. Design of the wall followed a performance-based retrofit strategy in which structural limit states appropriate to both the post-tensioned wall and the existing building were considered. Dissipation for each of the four post-tensioned walls was provided via externally mounted devices, located in parallel to post-tensioned tendons for re-centring. This allowed the dissipation devices to be easily replaced or inspected following a major earthquake. Each wall was installed with viscous fluid dampers, tension-compression yielding steel dampers, a combination of both or no devices at all – thus relying on contact damping alone. The effectiveness of both velocity and displacement dependant dissipation are investigated for protection against far-field and velocity-pulse ground motion characteristics. The experimental results validate the behaviour of ‘Advanced Flag-Shape’ rocking, dissipating solutions which have been recently proposed and numerically tested. Maximum displacements and material strains were well controlled and within acceptable bounds, and residual deformations were minimal due to the re-centring contribution from the post-tensioned tendons. Damage was confined to inelastic yielding (or fluid damping) of the external dampers.

Audio, Radio New Zealand

Rolleston is a town in the Selwyn District of Canterbury, just outside the Christchurch City boundary. It was close to the epicenter of the September earthquake last year, but suffered little damage because it sits on very stable rock.

Research papers, University of Canterbury Library

Despite their good performance in terms of their design objectives, many modern code-prescriptive buildings built in Christchurch, New Zealand had to be razed after the 2010-2011 Canterbury earthquakes because repairs were deemed too costly due to widespread sacrificial damage. Clearly a more effective design paradigm is needed to create more resilient structures. Rocking, post-tensioned connections with supplemental energy dissipation can contribute to a damage avoidance designs (DAD). However, few have achieved all three key design objectives of damage-resistant rocking, inherent recentering ability, and repeatable, damage-free energy dissipation for all cycles, which together offer a response which is independent of loading history. Results of experimental tests are presented for a near full-scale rocking beam-column sub-assemblage. A matrix of test results is presented for the system under varying levels of posttensioning, with and without supplemental dampers. Importantly, this parametric study delineates each contribution to response. Practical limitations on posttensioning are identified: a minimum to ensure static structural re-centering, and a maximum to ensure deformability without threadbar yielding. Good agreement between a mechanistic model and experimental results over all parameters and inputs indicates the model is robust and accurate for design. The overall results indicate that it is possible to create a DAD connection where the non-linear force-deformation response is loading history independent and repeatable over numerous loading cycles, without damage, creating the opportunity for the design and implementation of highly resilient structures.

Research papers, University of Canterbury Library

Among the deformation features produced in Christchurch by the September 4th Darfield Earthquake were numerous and widespread “sand volcanoes”. Most of these structures occurred in urban settings and “erupted” through a hardened surface of concrete or tarseal, or soil. Sand volcanoes were also widespread in the Avon‐ Heathcote Estuary and offered an excellent opportunity to readily examine shallow subsurface profiles and as such the potential appearance of such structures in the rock record.

Research papers, University of Canterbury Library

Recent major earthquakes such as Northridge 1994 and Izmit Kocaeli 1999 highlighted the poor performance of existing buildings constructed prior to the early 1970’s. Low lateral seismic design coefficients and the adopted “working stress design” methodology (essentially an elastic design) lacked any inelastic design considerations, thus leading to inadequate detailing. Insufficient development lengths, lapping within potential plastic hinge regions, lack, or total absence of joint transverse reinforcement, and the use of plain round reinforcement and hooked end anchorages were common throughout the structure. The behaviour is generally dominated by brittle local failure mechanisms (e.g. joint or element shear failures) as well as possible soft-storey mechanisms at a global level. Amongst several possible retrofit interventions, a typical solution is to provide the structure with additional structural walls i.e. external buttressing or column in-fills. Extensive developments on precast, post-tensioned, dissipative systems have shown promise for the use of rocking wall systems to retrofit existing poorly detailed frame structures. In this contribution, the feasibility of such a retrofit intervention is investigated. A displacement-based retrofit procedure is developed and proposed, based on targeting pre-defined performance criteria, such as joint shear and/or column curvature deformation limits. A design example, using the proposed retrofit strategy on a prototype frame is presented. A brief overview on experimental work ongoing at the University of Canterbury investigating the dynamic response of advanced rocking walls for retrofit purposes will be provided.

Images, UC QuakeStudies

The Octagon Live Restaurant (formerly Trinity Church) on Worcester Street. Steel bracing has been placed on the tower to limit further damage from aftershocks. Sculptures of a cyclist, bungee jumper, rock climber and kayaker can be seen on the bracing posts.

Images, eqnz.chch.2010

20160703_144759_GT-S7275T-04 New sea wall at Redcliffs (185/366) I went for a drive in my second car mainly to charge the battery up and forgot to take my camera gear so only had my phone. This is the new rock wall to replace the severely damaged previous one (in the February 2011 earthquake). Work is still underway on the car parking and p...

Videos, UC QuakeStudies

A video of an interview with Terry Huggins about a boulder crashing into the side of his neighbour's house in Sumner. The boulder came lose from the cliffs above and smashed through the deck of the house into one of the supporting poles. It is the third large boulder to hit the house, with one also lodged in a bedroom.

Research papers, University of Canterbury Library

Bulk rock strength is greatly dependent on fracture density, so that reductions in rock strength associated with faulting and fracturing should be reflected by reduced shear coupling and hence S-wave velocity. This study is carried out along the Canterbury rangefront and in Otago. Both lie within the broader plate boundary deformation zone in the South Island of New Zealand. Therefore built structures are often, , located in areas where there are undetected or poorly defined faults with associated rock strength reduction. Where structures are sited near to, or across, such faults or fault-zones, they may sustain both shaking and ground deformation damage during an earthquake. Within this zone, management of seismic hazards needs to be based on accurate identification of the potential fault damage zone including the likely width of off-plane deformation. Lateral S-wave velocity variability provides one method of imaging and locating damage zones and off-plane deformation. This research demonstrates the utility of Multi-Channel Analysis of Surface Waves (MASW) to aid land-use planning in such fault-prone settings. Fundamentally, MASW uses surface wave dispersive characteristics to model a near surface profile of S-wave velocity variability as a proxy for bulk rock strength. The technique can aid fault-zone planning not only by locating and defining the extent of fault-zones, but also by defining within-zone variability that is readily correlated with measurable rock properties applicable to both foundation design and the distribution of surface deformation. The calibration sites presented here have well defined field relationships and known fault-zone exposure close to potential MASW survey sites. They were selected to represent a range of progressively softer lithologies from intact and fractured Torlesse Group basement hard rock (Dalethorpe) through softer Tertiary cover sediments (Boby’s Creek) and Quaternary gravels. This facilitated initial calibration of fracture intensity at a high-velocity-contrast site followed by exploration of the limits of shear zone resolution at lower velocity contrasts. Site models were constructed in AutoCAD in order to demonstrate spatial correlations between S-wave velocity and fault zone features. Site geology was incorporated in the models, along with geomorphology, river profiles, scanline locations and crosshole velocity measurement locations. Spatial data were recorded using a total-station survey. The interpreted MASW survey results are presented as two dimensional snapshot cross-sections of the three dimensional calibration-site models. These show strong correlations between MASW survey velocities and site geology, geomorphology, fluvial profiles and geotechnical parameters and observations. Correlations are particularly pronounced where high velocity contrasts exist, whilst weaker correlations are demonstrated in softer lithologies. Geomorphic correlations suggest that off-plane deformation can be imaged and interpreted in the presence of suitable topographic survey data. A promising new approach to in situ and laboratory soft-rock material and mass characterisation is also presented using a Ramset nail gun. Geotechnical investigations typically involve outcrop and laboratory scale determination of rock mass and material properties such as fracture density and unconfined compressive strength (UCS). This multi-scale approach is espoused by this study, with geotechnical and S-wave velocity data presented at multiple scales, from survey scale sonic velocity measurements, through outcrop scale scanline and crosshole sonic velocity measurements to laboratory scale property determination and sonic velocity measurements. S-wave velocities invariably increased with decreasing scale. These scaling relationships and strategies for dealing with them are investigated and presented. Finally, the MASW technique is applied to a concealed fault on the Taieri Ridge in Macraes Flat, Central Otago. Here, high velocity Otago Schist is faulted against low velocity sheared Tertiary and Quaternary sediments. This site highlights the structural sensitivity of the technique by apparently constraining the location of the principal fault, which had been ambiguous after standard processing of the seismic reflection data. Processing of the Taieri Ridge dataset has further led to the proposal of a novel surface wave imaging technique termed Swept Frequency Imaging (SFI). This inchoate technique apparently images the detailed structure of the fault-zone, and is in agreement with the conventionally-determined fault location and an existing partial trench. Overall, the results are promising and are expected to be supported by further trenching in the near future.

Videos, UC QuakeStudies

A video of an interview with Mark Forster, Operations Manager of the Christchurch Gondola, about the revamp of the gondola. The attraction has been closed since 22 February 2011 while the café and restaurant is being renovated and the rock fall from the hill above mitigated.

Research papers, University of Canterbury Library

Slender precast concrete wall panels are currently in vogue for the construction of tall single storey warehouse type buildings. Often their height to thickness ratio exceed the present New Zealand design code (NZS 3101) limitations of 30:1. Their real performance under earthquake attack is unknown. Therefore, this study seeks to assess the dynamic performance of slender precast concrete wall panels with different base connection details. Three base connections (two fixed base and one rocking) from two wall specimens with height to thickness ratios of 60:1 were tested under dynamic loading. The two fixed based walls had longitudinal steel volumes of 1.27% to 0.54% and were tested on the University of Canterbury shaking table to investigate their proneness to out-of-plane buckling. Based on an EUler-type theoretical formula derived as part of the study, an explanation is made as to why walls with high in-plane capacity are more prone to buckling. The theory was validated against the present and past experimental evidence. The rocking base connection designed and built in accordance with a damage avoidance philosophy was tested on the shaking table in a similar fashion to the fixed base specimens. Results show that in contrast with their fixed base counterparts, rocking walls can indeed fulfil a damage-free design objective while also remaining stable under strong earthquake ground shaking.

Audio, Radio New Zealand

It's seven years today since Christchurch was rocked by the magnitude 6.3 earthquake. It killed 185 people, injured thousands more and led to whole suburbs and most of the central city being demolished. Seven years on, the rebuild is still underway and some residents are still struggling to get the repairs they want.

Images, UC QuakeStudies

Two workers inspect fuses placed in an embankment during reinforcement work. The photographer comments, "This is the reinforcing of an embankment in the port of Lyttelton, which partly collapsed in the Christchurch earthquakes. They are using the same equipment as used for blowing up rock faces to mend them".

Images, eqnz.chch.2010

Further damage to the bank following the two quakes on 23/12/11. The sewer line broke here and was repaired (patched) by council staff on Christmas Eve. It is hard to beleve that this rock wall was level with the land here, before any of the quakes.

Videos, UC QuakeStudies

A video of an interview with Robin Judkins, Canterbury personality and Coast to Coast founder, about his experiences during the 22 February 2011 earthquake, and the changes to Christchurch. This video is part of The Press's 'Christchurch, one year after February 22, 2011' series.