Search

found 164 results

Research papers, The University of Auckland Library

The progressive damage and subsequent demolition of unreinforced masonry (URM) buildings arising from the Canterbury earthquake sequence is reported. A dataset was compiled of all URM buildings located within the Christchurch CBD, including information on location, building characteristics, and damage levels after each major earthquake in this sequence. A general description of the overall damage and the hazard to both building occupants and to nearby pedestrians due to debris falling from URM buildings is presented with several case study buildings used to describe the accumulation of damage over the earthquake sequence. The benefit of seismic improvement techniques that had been installed to URM buildings is shown by the reduced damage ratios reported for increased levels of retrofit. Demolition statistics for URM buildings in the Christchurch CBD are also reported and discussed. VoR - Version of Record

Articles, UC QuakeStudies

A document that outlines how timely and accurate information relating to estimating, actual project costs, future commitments, and total forecast cost, will be managed and reported for each project phase in the programme.

Articles, UC QuakeStudies

A plan which proactively addresses the risk of fraud and lays out the actions that SCIRT will take when any suspected fraud is reported or discovered. The first version of this plan was produced on 12 February 2014.

Research papers, The University of Auckland Library

Following the Christchurch earthquake of 22 February 2011 a number of researchers were sent to Christchurch, New Zealand to document the damage to masonry buildings as part of “Project Masonry”. Coordinated by the Universities of Auckland and Adelaide, researchers came from Australia, New Zealand, Canada, Italy, Portugal and the US. The types of masonry investigated were unreinforced clay brick masonry, unreinforced stone masonry, reinforced concrete masonry, residential masonry veneer and churches; masonry infill was not part of this study. This paper focuses on the progress of the unreinforced masonry (URM) component of Project Masonry. To date the research team has completed raw data collection on over 600 URM buildings in the Christchurch area. The results from this study will be extremely relevant to Australian cities since URM buildings in New Zealand are similar to those in Australia.

Articles, UC QuakeStudies

A report created by the University of Canterbury Quake Centre and the University of Auckland, funded by the Building Research Levy. It shows how an innovation process was initiated and managed throughout the rebuilding of the horizontal infrastructure after the Canterbury earthquakes.

Articles, UC QuakeStudies

A plan which outlines how timely and accurate information relating to estimating, actual project costs, future commitments and total forecast cost will be managed and reported for each project phase in the programme. The first version of this plan was produced on 24 June 2011.

Research papers, University of Canterbury Library

The Canterbury earthquakes resulted in numerous changes to the waterways of Ōtautahi Christchurch. These included bank destabilisation, liquefaction effects, changes in bed levels, and associated effects on flow regimes and inundation levels. This study set out to determine if these effects had altered the location and pattern of sites utilised by īnanga (Galaxias maculatus) for spawning, which are typically restricted to very specific locations in upper estuarine areas. Extensive surveys were carried out in the Heathcote/Ōpāwaho and Avon/Ōtākaro catchments over the four peak months of the 2015 spawning season. New spawning sites were found in both rivers and analysis against pre-earthquake records identified that other significant changes have occurred. Major changes include the finding of many new spawning sites in the Heathcote/Ōpāwaho catchment. Sites now occur up to 1.5km further downstream than the previously reported limit and include the first records of spawning below the Woolston Cut. Spawning sites in the Avon/Ōtākaro catchment also occur in new locations. In the mainstem, sites now occur both upstream and downstream of all previously reported locations. A concentrated area of spawning was identified in Lake Kate Sheppard at a distinctly different location versus pre-quake records, and no spawning was found on the western shores. Spawning was also recorded for the first time in Anzac Creek, a nearby waterway connected to Lake Kate Sheppard via a series of culverts.

Articles, UC QuakeStudies

A PDF copy of a proposal prepared by Anglican Advocacy (formerly the Anglican Life Social Justice Unit) and Te Whare Roimata to MBIE and CERA in 2012. The report outlines how social housing could look in Christchurch's Inner City East following the Christchurch earthquakes.

Research papers, University of Canterbury Library

Following the Canterbury earthquake sequence of 2010-11, a large and contiguous tract of vacated ‘red zoned’ land lies alongside the lower Ōtākaro / Avon River and is known as the Avon-Ōtākaro Red Zone (AORZ). This is the second report in the Ecological Regeneration Options (ERO) project that addresses future land uses in the AORZ. The purpose of this report is to present results from an assessment of restoration opportunities conducted in April 2017. The objectives of the assessment were to identify potential benefits of ecological restoration activities across both land and water systems in the AORZ and characterise the key options for their implementation. The focus of this report is not to provide specific advice on the methods for achieving specific restoration endpoints per se. This will vary at different sites and scales with a large number of combinations possible. Rather, the emphasis is on providing an overview of the many restoration and regeneration options in their totality across the AORZ. An additional objective is to support their adequate assessment in the identification of optimum land uses and adaptive management practices for the AORZ. Participatory processes may play a useful role in assessment and stakeholder engagement by providing opportunities for social learning and the co-creation of new knowledge. We used a facilitated local knowledge based approach that generated a large quantity of reliable and site specific data in a short period of time. By inviting participation from a wide knowledge-holder network inclusivity is improved in comparison to small-group expert panel approaches. Similar approaches could be applied to other information gathering and assessment needs in the regeneration planning process. Findings from this study represent the most comprehensive set of concepts available to date to address the potential benefits of ecological regeneration in the AORZ. This is a core topic for planning to avoid missed opportunities and opportunity costs. The results identify a wide range of activities that may be applied to generate benefits for Christchurch and beyond, all involving aspects of a potential new ecology in the AORZ. These may be combined at a range of scales to create scenarios, quantify benefits, and explore the potential for synergies between different land use options. A particular challenge is acquiring the information needed within relatively short time frames. Early attention to gathering baseline data, addressing technical knowledge gaps, and developing conceptual frameworks to account for the many spatio-temporal aspects are all key activities that will assist in delivering the best outcomes. Methodologies by which these many facets can be pulled together in quantitative and comparative assessments are the focus of the final report in the ERO series.

Articles, UC QuakeStudies

Following the February 2011 earthquake, the Canterbury Branch of the TEU surveyed members to determine the psychological and physical impact of the earthquakes on members, in particular on their working conditions and ability to participate in consultation processes. 90 members responded, and this report gives a summary of the responses to short-answer questions and overall themes.

Articles, UC QuakeStudies

Following the February 2011 earthquake, the Canterbury Branch of the TEU surveyed members to determine the psychological and physical impact of the earthquakes on members, in particular on their working conditions and ability to participate in consultation processes. 90 members responded, and this report gives a summary of the percentage of responses received for each survey question.

Research papers, University of Canterbury Library

This report contributes to a collaborative project between the Marlborough District Council (MDC) and University of Canterbury (UC) which aims to help protect and promote the recovery of native dune systems on the Marlborough coast. It is centred around the mapping of dune vegetation and identification of dune protection zones for old-growth seed sources of the native sand-binders spinifex (Spinifex sericeus) and pīngao (Ficinia spiralis). Both are key habitat-formers associated with nationally threatened dune ecosystems, and pīngao is an important weaving resource and Ngāi Tahu taonga species. The primary goal is to protect existing seed sources that are vital for natural regeneration following major disturbances such as the earthquake event. Several additional protection zones are also identified for areas where new dunes are successfully regenerating, including areas being actively restored in the Beach Aid project that is assisting new native dunes to become established where there is available space.

Research papers, University of Canterbury Library

Welcome to the Recover issue 3 newsletter from the Marine Ecology Research Group (MERG) at the University of Canterbury. Recover is designed to keep you updated on our MBIE funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). In this third instalment we are looking into recent paua, whitebait, and … work our team has undertaken.

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 2 from the Marine Ecology Research Group (MERG) at the University of Canterbury. Recover is designed to keep you updated on our MBIE funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This second issue profiles some of the recent work done by our team out in the field!

Research papers, University of Canterbury Library

Welcome to the Recover newsletter Issue 4 from the Marine Ecology Research Group (MERG) of the University of Canterbury. Recover is designed to keep you updated on our MBIE-funded earthquake recovery project called RECOVER (Reef Ecology, Coastal Values & Earthquake Recovery). This 4th instalment covers recent work on seaweed recovery in the subtidal zone, ecological engineering in Waikoau / Lyell Creek, and a sneak preview of drone survey results!