Search

found 145 results

Research papers, Victoria University of Wellington

A Line of Best Fit explores weakness and disconnection in the city. Weakness: There are over 600 earthquake prone buildings in Wellington. The urgency to strengthen buildings risks compromising the aesthetic integrity of the city through abrasive strengthening techniques, or losing a large portion of our built environment to demolition. The need for extensive earthquake strengthening in Wellington, Christchurch and other New Zealand cities provides an exciting opportunity for architecture. Disconnection: In Wellington pedestrian activity is focused around three main routes: Cuba Street, Lambton Quay and Courtney Place. The adjacent areas are often disconnected and lack vibrancy due to large building footprints, no-exit laneways and lack of public spaces. The Design proposes a strategy for earthquake strengthening, preserving and upgrading the built environment, and expanding and connecting the pedestrian realm. The site is two earthquake prone buildings on the block between Marion Street and Taranaki Street in central Wellington. A cut through the centre of the Aspro and Cathie Buildings ties the buildings together to strengthen and create a new arcade as public space. The cut aligns with existing pedestrian routes connecting the block with the city. The Design is divided into three components: Void, Curve, and Pattern and Structure. Void investigates the implications of cutting a portion out the existing buildings and the opportunities this provides for connection, urban interaction, and light. Curve discusses the unusual form of The Design in terms of scale, the human response and the surrounding spaces. Pattern and Structure considers the structural requirements of the project and how a void enveloped in perforated screens can strengthen the earthquake prone buildings. The importance of connection, providing strength in the city, a dialogue between old and new, and engagement with the unexpected are evaluated. Opportunities for further development and research are discussed, with particular reference to how the principles of The Design could be implemented on a larger scale throughout our cities. A Line of Best Fit is an architectural proposal that creates strength and connection.

Research Papers, Lincoln University

Brooklands Lagoon / Te Riu o Te Aika Kawa (‘Brooklands’) is an important wetland and estuarine ecosystem in Canterbury. It is a site of cultural significance to Ngāi Tūāhuriri, and is also valued by the wider community. Home to an array of life, it is connected to the Pūharakekenui/Styx and Waimakariri rivers, and is part of a wetland landscape complex that includes the Avon-Heathcote / Ihutai estuary to the south and the Ashley / Rakahuri estuary to the north. Notionally situated within the territorial boundary of Christchurch City Council and jurisdictionally encompassed by the regional council Environment Canterbury, it has been legally determined to be part of the coastal marine area. The complicated administrative arrangements for the lagoon mirror the biophysical and human challenges to this surprisingly young ecosystem since its formation in 1940. Here we present a synthesis of the historical events and environmental influences that have shaped Brooklands Lagoon. Before existing as an intertidal ecosystem, the Waimakariri river mouth was situated in what is now the southern end of the lagoon. A summary timeline of key events is set out in the table below. These included the diversion of the Waimakariri River mouth via the construction of Wrights Cut in the 1930s, which influenced the way that the lower reaches of the river interacted with the land and sea. A large flood in 1940 shifted the river mouth ~2 to 3 kilometres north, that created the landscape that we see today. However, this has not remained stable, as the earthquake sequence in 2010 and 2011 subsided the bed of the estuary. The changes are ongoing, as sea level rise and coastal inundation will place ongoing pressure on the aquatic ecosystem and surrounding land. How to provide accommodation space for Brooklands as an estuary will be a key planning and community challenge, as Environment Canterbury begins the engagement for the review of its Regional Coastal Plan. There is also a requirement to safeguard its ecological health under the 2020 National Policy Statement on Freshwater Management. This will necessitate an integrated mountains to sea (ki uta ki tai) management approach as the lagoon is affected by wider catchment activities. We hope that this report will contribute to, and inform these processes by providing a comprehensive historical synthesis, and by identifying considerations for the future collaborative management of Brooklands Lagoon, and protection of its values. In essence, we suggest that Te Riu o Te Aika Kawa deserves some sustained aroha.

Research papers, Victoria University of Wellington

<b>Ōtautahi-Christchurch faces the future in an enviable position. Compared to other New Zealand cities Christchurch has lower housing costs, less congestion, and a brand-new central city emerging from the rubble of the 2011 earthquakes. ‘Room to Breathe: designing a framework for medium density housing (MDH) in Ōtautahi-Christchurch’ seeks to answer the timely question how can medium density housing assist Ōtautahi-Christchurch to respond to growth in a way that supports a well-functioning urban environment? Using research by design, the argument is made that MDH can be used to support a safe, accessible, and connected urban environment that fosters community, while retaining a level of privacy. This is achieved through designing a neighbourhood concept addressing 3 morphological scales- macro- the city; meso- the neighbourhood; and micro- the home and street. The scales are used to inform a design framework for MDH specific to Ōtautahi-Christchurch, presenting a typological concept that takes full advantage of the benefits higher density living has to offer.</b> Room to Breathe proposes repurposing underutilised areas surrounding existing mass transit infrastructure to provide a concentrated populous who do not solely rely on private vehicles for transport. By considering all morphological scales Room to Breathe provides one suggestion on how MDH could become accepted as part of a well-functioning urban environment.

Research papers, University of Canterbury Library

A building boom in the 1980s allowed pre-stressed hollow-core floor construction to be widely adopted in New Zealand, even though the behaviour of these prefabricated elements within buildings was still uncertain. Inspections following the Canterbury and Kaikōura earthquakes has provided evidence of web-splitting, transverse cracking and longitudinal splitting on hollow-core units, confirming the susceptibility of these floors to undesirable failure modes. Hollow-core slabs are mainly designed to resist bending and shear. However, there are many applications in which they are also subjected to torsion. In New Zealand, hollow-core units contain no transverse reinforcement in the soffit concrete below the cells and no web reinforcement. Consequently, their dependable performance in torsion is limited to actions that they can resist before torsional cracking occurs. In previous work by the present authors, a three-dimensional FE modelling approach to study the shear flexural behaviour of precast pre-stressed hollow core units was developed and validated by full-scale experiments. This paper shows how the FE analyses have been extended to investigate the response of HC units subjected to torsional actions. Constitutive models, based on nonlinear fracture mechanics, have been used to numerically predict the torsional capacity of HC units and have been compared with experimental results. The results indicate that the numerical approach is promising and should be developed further as part of future research.

Research papers, University of Canterbury Library

Low Damage Seismic Design (LDSD) guidance material being developed by Engineering NZ is considering a design drift limit for multi-storey buildings of 0.5% at a new damage control limit state (DCLS). The impact of this new design requirement on the expected annual loss due to repair costs is investigated for a four-storey office building with reinforced concrete walls located in Christchurch. The LDSD guidance material aims to reduce the expected annual loss of complying buildings to below 0.1% of building replacement cost. The research tested this expectation. Losses were estimated in accordance with FEMA P58, using building responses from non-linear time history analyses (performed with OpenSees using lumped plasticity models). The equivalent static method, in line with NZS 1170.5 and NZS 3101, was used to design the building to LDSD specifications, representing a future state-of-practice design. The building designed to low-damage specification returned an expected annual loss of 0.10%, and the building designed conventionally returned an expected annual loss of 0.13%. Limitations with the NZS 3101 method for determining wall stiffness were identified, and a different method acknowledging the relationship between strength and stiffness was used to redesign the building. Along with improving this design assumption, the study finds that LDSD design criteria could be an effective way of limiting damage and losses.