Search

found 186 results

Images, UC QuakeStudies

A photograph of the earthquake damage to the Cathedral of the Blessed Sacrament on Barbadoes Street. The tower on the right has crumbled, and the masonry has fallen to the pavement below. A car has been crushed by the fallen rubble. Windows in the tower behind are broken.

Images, UC QuakeStudies

A photograph of the earthquake damage to a building on Lichfield Street. Masonry from the top section of the building has broken away and spilled onto the footpath below. A red sticker has been placed on the door, indicating that the building is unsafe to enter. USAR codes have been spray-painted on the column and window to the right.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Cranmer Courts on the corner of Montreal and Kilmore Streets. Two chimneys have been removed from the building and placed on the footpath in front. Various pieces of fallen masonry can also be seen on the footpath. Wire fencing and road cones have been placed around the building as a cordon.

Research papers, The University of Auckland Library

In the early morning of 4th September 2010 the region of Canterbury, New Zealand, was subjected to a magnitude 7.1 earthquake. The epicentre was located near the town of Darfield, 40 km west of the city of Christchurch. This was the country’s most damaging earthquake since the 1931 Hawke’s Bay earthquake (GeoNet, 2010). Since 4th September 2010 the region has been subjected to thousands of aftershocks, including several more damaging events such as a magnitude 6.3 aftershock on 22nd February 2011. Although of a smaller magnitude, the earthquake on 22nd February produced peak ground accelerations in the Christchurch region three times greater than the 4th September earthquake and in some cases shaking intensities greater than twice the design level (GeoNet, 2011; IPENZ, 2011). While in September 2010 most earthquake shaking damage was limited to unreinforced masonry (URM) buildings, in February all types of buildings sustained damage. Temporary shoring and strengthening techniques applied to buildings following the Darfield earthquake were tested in February 2011. In addition, two large aftershocks occurred on 13th June 2011 (magnitudes 5.7 and 6.2), further damaging many already weakened structures. The damage to unreinforced and retrofitted clay brick masonry buildings in the 4th September 2010 Darfield earthquake has already been reported by Ingham and Griffith (2011) and Dizhur et al. (2010b). A brief review of damage from the 22nd February 2011 earthquake is presented here

Research papers, The University of Auckland Library

The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for the case of adhesive anchor connections than for the case of through-bolt connections (i.e. anchorages having plates on the exterior façade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation and the use of metal foil sleeve. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5o to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes and a snapshot of the performed experimental program and the test results are presented herein. http://hdl.handle.net/2292/21050

Images, UC QuakeStudies

A photograph of the badly-damaged Octagon Live Restaurant on the corner of Worcester and Manchester Streets. The masonry around the gable has crumbled, falling onto the footpath in front.

Images, UC QuakeStudies

A photograph of the Cranmer Courts on the corner of Kilmore and Montreal Streets. The gable to the left has crumbled, and there is damage to the tip of the gable in the foreground. Wooden bracing has been placed on both walls to limit further damage from aftershocks.

Images, UC QuakeStudies

The southern side of the Christ Church Cathedral with boarded up windows and damage to the roof above both of the transepts. Damaged masonry has been piled on the ground in front and one of the spires has been removed and braced with steel in the foreground.

Images, UC QuakeStudies

A photograph of the earthquake damage to the Canterbury Provincial Chambers Buildings on Durham Street. Large sections of the masonry have collapsed, spilling onto the road. Wire fencing has been placed around the building as a cordon. Scaffolding erected up the side of the building after the 4 September 2010 earthquake has collapsed. In the distance, a crane is parked on the street.

Images, UC QuakeStudies

Damage to the Repertory Theatre building. Part of the facade has collapsed onto the awning below, and bricks and masonry have spilled across the street. The building is cordoned off with road cones and police tape.

Images, Canterbury Museum

One landscape colour digital photograph taken on 6 September 2010 showing earthquake damage to a red brick fence on Bealey Avenue. Unreinforced brick masonry was particularly susceptible to damage during the 2010-2011 Canterbury earthquakes. Walls and fences constructed from on many properties were shaken loose causing piles of rubble to litter...

Research papers, The University of Auckland Library

Churches are an important part of New Zealand's historical and architectural heritage. Various earthquakes around the world have highlighted the significant seismic vulnerability of religious buildings, with the extensive damage that occurred to stone and clay-brick unreinforced masonry churches after the 2010-2011 Canterbury earthquakes emphasising the necessity to better understand this structural type. Consequently, a country-wide inventory of unreinforced masonry churches is here identified. After a bibliographic and archival investigation, and a 10 000 km field trip, it is estimated that currently 297 unreinforced masonry churches are present throughout New Zealand, excluding 12 churches demolished in Christchurch because of heavy damage sustained during the Canterbury earthquake sequence. The compiled database includes general information about the buildings, their architectural features and structural characteristics, and any architectural and structural transformations that have occurred in the past. Statistics about the occurrence of each feature are provided and preliminary interpretations of their role on seismic vulnerability are discussed. The list of identified churches is reported in annexes, supporting their identification and providing their address.

Research papers, The University of Auckland Library

Following the 22 February 2011 Christchurch earthquake a comprehensive damage survey of the unreinforced masonry (URM) building stock of Christchurch city, New Zealand was undertaken. Because of the large number of aftershocks associated with both the 2011 Christchurch earthquake and the earlier 4 September 2010 Darfield earthquake, and the close proximity of their epicentres to Christchurch city, this earthquake sequence presented a unique opportunity to assess the performance of URM buildings and the various strengthening methods used in New Zealand to increase the performance of these buildings in earthquakes. Because of the extent of data that was collected, a decision was made to initially focus exclusively on the earthquake performance of URM buildings located in the central business district (CBD) of Christchurch city. The main objectives of the data collection exercise were to document building characteristics and any seismic strengthening methods encountered, and correlate these attributes with observed earthquake damage. In total 370 URM buildings in the CBD were surveyed. Of the surveyed buildings, 62% of all URM buildings had received some form of earthquake strengthening and there was clear evidence that installed earthquake strengthening techniques in general had led to reduced damage levels. The procedure used to collect and process information associated with earthquake damage, general analysis and interpretation of the available survey data for the 370 URM buildings, the performance of earthquake strengthening techniques, and the influence of earthquake strengthening levels on observed damage are reported within. http://15ibmac.com/home/