A photograph captioned by BeckerFraserPhotos, "Two decorated road cones at 41 Cannon Hill Crescent in Mt Pleasant".
Looking toward the hills
A photograph of Christmas messages chalked on the side of a damaged house at 41 Cannon Hill Crescent in Mt Pleasant.
A photograph of Christmas messages chalked on the side of a damaged house at 41 Cannon Hill Crescent in Mt Pleasant.
Photograph captioned by BeckerFraserPhotos, "The empty site where 31 Cannon Hill Crescent in Mt Pleasant used to be".
A photograph of a Christmas message written on the wall of a house at Cannon Hill Crescent in Mt Pleasant.
Since early European settlement, the caves that honeycombed the Port Hills, from Sumner to Lyttelton, have been used by all manner of loners, vagrants and deserters as places of escape or retreat O…
Sign in Hills Road PWS-2010-12-09-05483
This report to RCP Ltd and University of Canterbury summarises the findings of a 5 month secondment to the CERA Port Hills Land Clearance Team. Improvement strategies were initiated and observed. The Port Hills Land Clearance Programme is the undertaking of the demolition of all built structures from the Crown’s compulsory acquired 714 residential red zoned properties. These properties are zoned red due to an elevated life risk as a result of geotechnical land uncertainty following the 2011 Canterbury Earthquakes.
Aerial image of the Port Hills in Christchurch taken by the Royal New Zealand Air Force for the Earthquake Commission.
Aerial image of the Port Hills in Christchurch taken by the Royal New Zealand Air Force for the Earthquake Commission.
Aerial image of the Port Hills in Christchurch taken by the Royal New Zealand Air Force for the Earthquake Commission.
Photograph captioned by BeckerFraserPhotos, "Houses on Richmond Hill Road in Sumner, now close to the edge of the cliff".
An aerial view of the Port Hills a week after the 22 February 2011 earthquake. A landslide on the hill can be seen.
An aerial view of the Port Hills a week after the 22 February 2011 earthquake.
An aerial view of the Port Hills a week after the 22 February 2011 earthquake.
An aerial view of the Port Hills a week after the 22 February 2011 earthquake.
An aerial view of the Port Hills a week after the 22 February 2011 earthquake.
An aerial view of the Port Hills a week after the 22 February 2011 earthquake.
Slides from the presentation by Dr Marlene Villeneuve (Department of Geological Sciences) on "Towards Understanding Mechanisms of Failure in the Port Hills and Banks Peninsula".
A photograph of a chalked message on a wall at 41 Cannon Hill Crescent in Mt Pleasant, reading, "We've been very good this year".
An aerial view of the Port Hills a week after the 22 February 2011 earthquake.
PWS-2010-12-09-05484
Photograph captioned by BeckerFraserPhotos, "37 Cannon Hill Crescent in Mt Pleasant. Most of Mt Pleasant is green zoned, but 800 homes will be demolished".
Damaged shops on Hills Road in Shirley.
A photograph of a Christmas message written on the wall of a house at Cannon Hill Crescent in Mt Pleasant. Paper Christmas decorations have been stuck on the window above the wall.
An aerial photo looking south over Christchurch from the Waimakariri River.
The Canterbury Earthquake Sequence (CES) of 2010-2011 produced large seismic moments up to Mw 7.1. These large, near-to-surface (<15 km) ruptures triggered >6,000 rockfall boulders on the Port Hills of Christchurch, many of which impacted houses and affected the livelihoods of people within the impacted area. From these disastrous and unpredicted natural events a need arose to be able to assess the areas affected by rockfall events in the future, where it is known that a rockfall is possible from a specific source outcrop but the potential boulder runout and dynamics are not understood. The distribution of rockfall deposits is largely constrained by the physical properties and processes of the boulder and its motion such as block density, shape and size, block velocity, bounce height, impact and rebound angle, as well as the properties of the substrate. Numerical rockfall models go some way to accounting for all the complex factors in an algorithm, commonly parameterised in a user interface where site-specific effects can be calibrated. Calibration of these algorithms requires thorough field checks and often experimental practises. The purpose of this project, which began immediately following the most destructive rupture of the CES (February 22, 2011), is to collate data to characterise boulder falls, and to use this information, supplemented by a set of anthropogenic boulder fall data, to perform an in-depth calibration of the three-dimensional numerical rockfall model RAMMS::Rockfall. The thesis covers the following topics: • Use of field data to calibrate RAMMS. Boulder impact trails in the loess-colluvium soils at Rapaki Bay have been used to estimate ranges of boulder velocities and bounce heights. RAMMS results replicate field data closely; it is concluded that the model is appropriate for analysing the earthquake-triggered boulder trails at Rapaki Bay, and that it can be usefully applied to rockfall trajectory and hazard assessment at this and similar sites elsewhere. • Detailed analysis of dynamic rockfall processes, interpreted from recorded boulder rolling experiments, and compared to RAMMS simulated results at the same site. Recorded rotational and translational velocities of a particular boulder show that the boulder behaves logically and dynamically on impact with different substrate types. Simulations show that seasonal changes in soil moisture alter rockfall dynamics and runout predictions within RAMMS, and adjustments are made to the calibration to reflect this; suggesting that in hazard analysis a rockfall model should be calibrated to dry rather than wet soil conditions to anticipate the most serious outcome. • Verifying the model calibration for a separate site on the Port Hills. The results of the RAMMS simulations show the effectiveness of calibration against a real data set, as well as the effectiveness of vegetation as a rockfall barrier/retardant. The results of simulations are compared using hazard maps, where the maximum runouts match well the mapped CES fallen boulder maximum runouts. The results of the simulations in terms of frequency distribution of deposit locations on the slope are also compared with those of the CES data, using the shadow angle tool to apportion slope zones. These results also replicate real field data well. Results show that a maximum runout envelope can be mapped, as well as frequency distribution of deposited boulders for hazard (and thus risk) analysis purposes. The accuracy of the rockfall runout envelope and frequency distribution can be improved by comprehensive vegetation and substrate mapping. The topics above define the scope of the project, limiting the focus to rockfall processes on the Port Hills, and implications for model calibration for the wider scientific community. The results provide a useful rockfall analysis methodology with a defensible and replicable calibration process, that has the potential to be applied to other lithologies and substrates. Its applications include a method of analysis for the selection and positioning of rockfall countermeasure design; site safety assessment for scaling and demolition works; and risk analysis and land planning for future construction in Christchurch.
A photograph of the cliff face along Wakefield Avenue in Sumner. It is showing signs of recent rockfall.
A photograph of the cliff face along Wakefield Avenue in Sumner. It is showing signs of recent rockfall.