The 2010/2011 Canterbury earthquakes have provided a unique opportunity to investigate the seismic performance of both traditional and modern buildings constructed in New Zealand. It is critical that the observed performance is examined and compared against the expected levels of performance that are outlined by the Building Code and Design Standards. In particular, in recent years there has been a significant amount of research into the seismic behaviour of precast concrete floor systems and the robustness of the support connections as a building deforms during an earthquake. An investigation of precast concrete floor systems in Christchurch has been undertaken to assess both the performance of traditional and current design practice. The observed performance for each type of precast floor unit was collated from a number of post-earthquake recognisance activities and compared against the expected performance determined for previous experimental testing and analysis. Possible reasons for both the observed damage, and in some cases the lack of damage, were identified. This critical review of precast concrete floor systems will assist in determining the success of current design practice as well as identify any areas that require further research and/or changes to design standards.
The performance of conventionally designed reinforced concrete (RC) structures during the 2011 Christchurch earthquake has demonstrated that there is greater uncertainty in the seismic performance of RC components than previously understood. RC frame and wall structures in the Christchurch central business district were observed to form undesirable cracks patterns in the plastic hinge region while yield penetration either side of cracks, and into development zones, were less than theoretical predictions. The implications of this unexpected behaviour: (i) significantly less available ductility; (ii) less hysteretic energy dissipation; and (iii) the localization of peak reinforcement strains, results in considerable doubt for the residual capacity of RC structures. The significance of these consequences has prompted a review of potential sources of uncertainty in seismic experimentation with the intention to improve the current confidence level for newly designed conventional RC structures. This paper attempts to revisit the principles of RC mechanics, in particular, to consider the influence of loading history, concrete tensile strength, and reinforcement ratio on the performance of ‘real’ RC structures compared to experimental test specimens.
There are many things that organisations of any size can do to prepare for a disaster or crisis. Traditionally, the advice given to business has focused on identifying risks, reducing their likely occurrence, and planning in advance how to respond. More recently, there is growing interest in the broader concept of organisational resilience which includes planning for crisis but also considers traits that lead to organisational adaptability and ability to thrive despite adverse circumstances. In this paper we examine the policy frameworks1 within New Zealand that influence the resilience of small and medium sized businesses (SMEs). The first part of the paper focuses on the New Zealand context, including the prevailing political and economic ideologies, the general nature of New Zealand SMEs and the nature of New Zealand’s hazard environment. The paper then goes on to outline the key policy frameworks in place relevant to SMEs and hazards. The final part of the paper examines the way the preexisting policy environment influenced the response of SMEs and Government following the Canterbury earthquakes.
Children are often overlooked in the aftermath of a natural disaster, and children’s use of coping strategies plays an important part in their post-disaster adaptation (Vernberg, La Greca, Silverman, & Prinstein, 1996). The aim of this qualitative study was to explore the coping strategies of children with adequate self-regulation skills and minimal behaviour problems, living in Christchurch following the major 2010 and 2011 earthquakes. This aim was achieved through the use of semi-structured interviews with five seven-year-old children, their parents, and their teachers. These interviews were analysed using Directed Content Analysis and results showed that children most often reported using active and adaptive coping strategies, followed by avoidant strategies. Results in the current literature regarding children’s coping suggest that children exposed to natural disasters are able to utilise strategies that involve some personal control over their environment and emotions, through the use of active and adaptive coping strategies. Findings from this study contribute to the current understanding of children’s use of coping strategies when faced with commonly occurring childhood upsets. Further research is required regarding the outcomes associated with the use of effective coping strategies following traumatic events.
Liquefaction of sandy soil has been observed to cause significant damage to infrastructure during major earthquakes. Historical cases of liquefaction have typically occurred in sands containing some portion of fines particles, which are defined as 75μm or smaller in diameter. The effects of fines on the undrained behaviour of sand are not however fully understood, and this study therefore attempts to quantify these effects through the undrained testing of sand mixed with non-plastic fines sourced from Christchurch, New Zealand. The experimental program carried out during this study consisted of undrained monotonic and cyclic triaxial tests performed on three different mixtures of sand and fines: the Fitzgerald Bridge mixture (FBM), and two Pinnacles Sand mixtures (PSM1 and PSM2). The fines content of each host sand was systematically varied up to a maximum of 30%, with all test specimens being reconstituted using moist tamping deposition. The undrained test results from the FBM soils were interpreted using a range of different measures of initial state. When using void ratio and relative density, the addition of fines to the FBM sand caused more contractive behaviour for both monotonic and cyclic loadings. This resulted in lower strengths at the steady state of deformation, and lower liquefaction resistances. When the intergranular void ratio was used for the interpretation, the effect of additional fines was to cause less contractive response in the sand. The state parameter and state index were also used to interpret the undrained cyclic test results – these measures suggested that additional fines caused less contractive sand behaviour, the opposite to that observed when using the void ratio. This highlighted the dependency on the parameter chosen as a basis for the response comparison when determining the effects of fines, and pointed out a need to identify a measure that normalizes such effects. Based on the FBM undrained test results and interpretations, the equivalent granular void ratio, e*, was identified from the literature as a measure of initial state that normalizes the effects of fines on the undrained behaviour of sand up to a fines content of 30%. This is done through a parameter within the e* definition termed the fines influence factor, b, which quantifies the effects of fines from a value of zero (no effect) to one (same effect as sand particles). The value of b was also determined to be different when interpreting the steady state lines (bSSL) and cyclic resistance curves (bCR) respectively for a given mixture of sand and fines. The steady state lines and cyclic resistance curves of the FBM soils and a number of other sand-fines mixtures sourced from the literature were subsequently interpreted using the equivalent granular void ratio concept, with bSSL and bCR values being back-calculated from the respective test data sets. Based on these interpretations, it was concluded that e* was conceptually a useful parameter for characterizing and quantifying the effects of fines on the undrained behaviour of sand, assuming the fines influence factor value could be derived. To allow prediction of the fines influence factor values, bSSL and bCR were correlated with material and depositional properties of the presented sand-fines mixtures. It was found that as the size of the fines particles relative to the sand particles became smaller, the values of bSSL and bCR reduced, indicating lower effect of fines. The same trend was also observed as the angularity of the sand particles increased. The depositional method was found to influence the value of bCR, due to the sensitivity of cyclic loading to initial soil fabric. This led to bSSL being used as a reference for the effect of fines, with specimens prepared by moist tamping having bCR > bSSL, and specimens prepared by slurry deposition having bCR < bSSL. Finally the correlations of the fines influence factor values with material and depositional properties were used to define the simplified estimation method – a procedure capable of predicting the approximate steady state lines and cyclic resistance curves of a sand as the non-plastic fines content is increased up to 30%. The method was critically reviewed based on the undrained test results of the PSM1 and PSM2 soils. This review suggested the method could accurately predict undrained response curves as the fines content was raised, based on the PSM1 test results. It also however identified some key issues with the method, such as the inability to accurately predict the responses of highly non-uniform soils, a lack of consideration for the entire particle size distribution of a soil, and the fact the errors in the prediction of bSSL carry through into the prediction of bCR. Lastly some areas of further investigation relating to the method were highlighted, including the need to verify the method through testing of sandy soils sourced from outside the Christchurch area, and the need to correlate the value of bCR with additional soil fabrics / depositional methods.
This thesis focuses attention on the ongoing effects of the earthquakes on children in Christchurch. It identifies the learning and behavioural difficulties evident in an increasing number of students and cautions the use of the word 'resilient' to describe children who may be just managing. This assumption has a significant impact on the wellbeing of many Christchurch children who, disaster literature warns, are likely to be under-served. This thesis suggests that, because of the scale of need, schools are the best place to introduce practices that will foster wellbeing. Mindfulness practices are identified as a potential tool for ameliorating the vulnerabilities experienced by children, while at the same time working to increase their capabilities. This thesis argues that, through mindful practices, children can learn to be more reflective of their emotions and respond in more considered ways to different situations. They can become more relational, having a greater understanding of others through a deeper understanding of themselves, and they can build resilience by developing the protective factors that promote more adaptive functioning. This thesis identifies the strong links between mindfulness and the holistic wellbeing concept of Te Whare Tapa Whã and a Mãori worldview. Strong links are also identified with the vision, values and key competencies of the New Zealand Curriculum and 21st Century learners. Both short and long term recommendations are made for the introduction of mindfulness practices in schools to enhance the wellbeing of children.
The paper discusses modelling of cyclic stress-strain behaviour of soil, in particular a simple model that can produce a desired stiffness and hysteretic damping for a given strain level as observed in laboratory testing is formulated. The unloading-reloading relationship is developed for total stress seismic site response analysis with appropriate damping at large strain. The constitutive model employs a hyperbolic equation as the backbone curve, and uses a modification of the extended Masing unloading-reloading relationship leading to correct measured modulus reduction and damping curves simultaneously. A quasi-static cyclic loading of increasing amplitude is used to demonstrate the model’s performance and its capability to allow improved modelling of the magnitude of energy dissipation based on an experimental program on native sandy soils from Christchurch, New Zealand.
Recent experiences from the Darfield and Canterbury, New Zealand earthquakes have shown that the soft soil condition of saturated liquefiable sand has a profound effect on seismic response of buildings, bridges and other lifeline infrastructure. For detailed evaluation of seismic response three dimensional integrated analysis comprising structure, foundation and soil is required; such an integrated analysis is referred to as Soil Foundation Structure Interaction (SFSI) in literatures. SFSI is a three-dimensional problem because of three primary reasons: first, foundation systems are three-dimensional in form and geometry; second, ground motions are three-dimensional, producing complex multiaxial stresses in soils, foundations and structure; and third, soils in particular are sensitive to complex stress because of heterogeneity of soils leading to a highly anisotropic constitutive behaviour. In literatures the majority of seismic response analyses are limited to plane strain configuration because of lack of adequate constitutive models both for soils and structures, and computational limitation. Such two-dimensional analyses do not represent a complete view of the problem for the three reasons noted above. In this context, the present research aims to develop a three-dimensional mathematical formulation of an existing plane-strain elasto-plastic constitutive model of sand developed by Cubrinovski and Ishihara (1998b). This model has been specially formulated to simulate liquefaction behaviour of sand under ground motion induced earthquake loading, and has been well-validated and widely implemented in verifcation of shake table and centrifuge tests, as well as conventional ground response analysis and evaluation of case histories. The approach adopted herein is based entirely on the mathematical theory of plasticity and utilises some unique features of the bounding surface plasticity formalised by Dafalias (1986). The principal constitutive parameters, equations, assumptions and empiricism of the existing plane-strain model are adopted in their exact form in the three-dimensional version. Therefore, the original two-dimensional model can be considered as a true subset of the three-dimensional form; the original model can be retrieved when the tensorial quantities of the three dimensional version are reduced to that of the plane-strain configuration. Anisotropic Drucker-Prager type failure surface has been adopted for the three-dimensional version to accommodate triaxial stress path. Accordingly, a new mixed hardening rule based on Mroz’s approach of homogeneous surfaces (Mroz, 1967) has been introduced for the virgin loading surface. The three-dimensional version is validated against experimental data for cyclic torsional and triaxial stress paths.
This paper presents preliminary results of an experimental campaign on three beam-column joint subassemblies extracted from a 22-storey reinforced concrete frame building constructed in late 1980s at the Christchurch’s Central Business District (CBD) area, damaged and demolished after the 2010-2011 Canterbury earthquakes sequence (CES). The building was designed following capacity design principles. Column sway (i.e., soft storey) mechanisms were avoided, and the beams were provided with plastic hinge relocation details at both beam-ends, aiming at developing plastic hinges away from the column faces. The specimens were tested under quasi-static cyclic displacement controlled lateral loading. One of the specimens, showing no visible residual cracks was cyclically tested in its as-is condition. The other two specimens which showed residual cracks varying between hairline and 1.0mm in width, were subjected to cyclic loading to simulate cracking patterns consistent with what can be considered moderate damage. The cracked specimens were then repaired with an epoxy injection technique and subsequently retested until reaching failure. The epoxy injection techniques demonstrated to be quite efficient in partly, although not fully, restoring the energy dissipation capacities of the damaged specimens at all beam rotation levels. The stiffness was partly restored within the elastic range and almost fully restored after the onset of nonlinear behaviour.
During 2010 and 2011, a series of major earthquakes caused widespread damage in the city of Christchurch, New Zealand. The magnitude 6.3 quake in February 2011 caused 185 fatalities. In the ensuing months, the government progressively zoned residential land in Christchurch on the basis of its suitability for future occupation (considering damage from these quakes and future earthquake risk). Over 6,000 homes were placed in the ‘red-zone’, meaning that property owners were forced to sell their land to the Crown. This study analysed patterns of residential mobility amongst thirty-one red-zone households from the suburb of Southshore, Christchurch. Drawing on interviews and surveys, the research traced their experience from the zoning announcement until they had moved to a new residence. The research distinguished between short (before the zoning announcement) and long term (post the red zone ‘deadline’) forms of household relocation. The majority of households in the study were highly resistant to short term movement. Amongst those which did relocate before the zoning decision, the desire to maintain a valued social connection with a person outside of the earthquake environment was often an important factor. Some households also moved out of perceived necessity (e.g. due to lack of power or water). In terms of long-term relocation, concepts of affordability and safety were much more highly valued by the sample when purchasing post-quake property. This resulted in a distinct patterning of post-quake housing location choices. Perceived control over the moving process, relationship with government organisations and insurance companies, and time spent in the red-zone before moving all heavily influenced participants’ disaster experience. Contrary to previous studies, households in this study recorded higher levels of subjective well-being after relocating. The study proposed a typology of movers in the Christchurch post-disaster environment. Four mobility behaviours, or types, are identified: the Committed Stayers (CSs), the Environment Re-Creators (ERCs), the Resigned Acceptors (RAs), and the Opportunistic Movers (OMs). The CSs were defined by their immobility rather than their relocation aspirations, whilst the ERCs attempted to recreate or retain aspects of Southshore through their mobility. The RAs expressed a form of apathy towards the post-quake environment, whereas, on the other hand, the OMs moved relative to pre-earthquake plans, or opportunities that arose from the earthquake itself. Possibilities for further research include examining household adaptability to new residential environments and tracking further mobility patterns in the years following relocation from the red- zone.
Recent earthquakes in New Zealand proved that a shift is necessary in the current design practice of structures to achieve better seismic performance. Following such events, the number of new buildings using innovative technical solutions (e.g. base isolation, controlled rocking systems, damping devices, etc.), has increased, especially in Christchurch. However, the application of these innovative technologies is often restricted to medium-high rise buildings due to the maximum benefit to cost ratio. In this context, to address this issue, a multi-disciplinary geo-structural-environmental engineering project funded by the Ministry of Business Innovation and Employment (MBIE) is being carried out at the University of Canterbury. The project aims at developing a foundation system which will improve the seismic performance of medium-density low-rise buildings. Such foundation is characterized by two main elements: 1) granulated tyre rubber mixed with gravelly soils to be placed beneath the structure, with the goal of damping part of the seismic energy before it reaches the superstructure; and 2) a basement raft made of steel-fibre rubberised concrete to enhance the flexibility of the foundation under differential displacement demand. In the first part of this paper, the overarching objectives, scope and methodology of the project will be briefly described. Then, preliminary findings on the materials characterization, i.e., the gravel-rubber mixtures and steel-fibre rubberised concrete mixes, will be presented and discussed with focus on the mechanical behaviour.
In the period between September 2010 and December 2011, Christchurch was shaken by a series of strong earthquakes including the MW7.1 4 September 2010, Mw 6.2 22 February 2011, MW6.2 13 June 2011 and MW6.0 23 December 2011 earthquakes. These earthquakes produced very strong ground motions throughout the city and surrounding areas that resulted in soil liquefaction and lateral spreading causing substantial damage to buildings, infrastructure and the community. The stopbank network along the Kaiapoi and Avon River suffered extensive damage with repairs projected to take several years to complete. This presented an opportunity to undertake a case-study on a regional scale of the effects of liquefaction on a stopbank system. Ultimately, this information can be used to determine simple performance-based concepts that can be applied in practice to improve the resilience of river protection works. The research presented in this thesis draws from data collected following the 4th September 2010 and 22nd February 2011 earthquakes. The stopbank damage is categorised into seven key deformation modes that were interpreted from aerial photographs, consultant reports, damage photographs and site visits. Each deformation mode provides an assessment of the observed mechanism of failure behind liquefaction-induced stopbank damage and the factors that influence a particular style of deformation. The deformation modes have been used to create a severity classification for the whole stopbank system, being ‘no or low damage’ and ‘major or severe damage’, in order to discriminate the indicators and factors that contribute to ‘major to severe damage’ from the factors that contribute to all levels of damage a number of calculated, land damage, stopbank damage and geomorphological parameters were analysed and compared at 178 locations along the Kaiapoi and Avon River stopbank systems. A critical liquefiable layer was present at every location with relatively consistent geotechnical parameters (cone resistance (qc), soil behaviour type (Ic) and Factor of Safety (FoS)) across the study site. In 95% of the cases the critical layer occurred within two times the Height of the Free Face (HFF,). A statistical analysis of the geotechnical factors relating to the critical layer was undertaken in order to find correlations between specific deformation modes and geotechnical factors. It was found that each individual deformation mode involves a complex interplay of factors that are difficult to represent through correlative analysis. There was, however, sufficient data to derive the key factors that have affected the severity of deformation. It was concluded that stopbank damage is directly related to the presence of liquefaction in the ground materials beneath the stopbanks, but is not critical in determining the type or severity of damage, instead it is merely the triggering mechanism. Once liquefaction is triggered it is the gravity-induced deformation that causes the damage rather than the shaking duration. Lateral spreading and specifically the depositional setting was found to be the key aspect in determining the severity and type of deformation along the stopbank system. The presence or absence of abandoned or old river channels and point bar deposits was found to significantly influence the severity and type of deformation. A review of digital elevation models and old maps along the Kaiapoi River found that all of the ‘major to severe’ damage observed occurred within or directly adjacent to an abandoned river channel. Whilst a review of the geomorphology along the Avon River showed that every location within a point bar deposit suffered some form of damage, due to the depositional environment creating a deposit highly susceptible to liquefaction.
There is an increasing recognition that the seismic performance of buildings will be affected by the behaviour of both structural and non-structural elements. In light of this, work has been progressing at the University of Canterbury to develop guidelines for the seismic assessment of commercial glazing systems. This paper reviews the seismic assessment guidelines prescribed in Section C10 of the MBIE building assessment guidelines. Subsequently, the C10 approach is used to assess the drift capacity of a number of glazing units recently tested at the University of Canterbury. Comparing the predicted and observed drift capacities, it would appear that the C10 guidelines may lead to nonconservative estimates of drift capacity. Furthermore, the experimental results indicate that watertightness may be lost at very low drift demands, suggesting that guidance for the assessment of serviceability performance would also be beneficial. As such, it is proposed that improved guidance be provided to assist engineers in considering the possible impact that glazing could have on the structural response of a building in a large earthquake.
Depicts National MP Aaron Gilmore walking off carrying two suitcases. A row of Christchurch insurance men are calling for him to return and saying they have the right job for his talents. Refers to Gilmore's resignation after National Party censure following to his drunken bullying behaviour to a waiter in a Hanmer Springs restaurant (3 News 13 May 2013)
Quantity: 1 digital cartoon(s).
The Canterbury earthquake sequence (2010-2011) was the most devastating catastrophe in New Zealand‘s modern history. Fortunately, in 2011 New Zealand had a high insurance penetration ratio, with more than 95% of residences being insured for these earthquakes. This dissertation sheds light on the functions of disaster insurance schemes and their role in economic recovery post-earthquakes. The first chapter describes the demand and supply for earthquake insurance and provides insights about different public-private partnership earthquake insurance schemes around the world. In the second chapter, we concentrate on three public earthquake insurance schemes in California, Japan, and New Zealand. The chapter examines what would have been the outcome had the system of insurance in Christchurch been different in the aftermath of the Canterbury earthquake sequence (CES). We focus on the California Earthquake Authority insurance program, and the Japanese Earthquake Reinsurance scheme. Overall, the aggregate cost of the earthquake to the New Zealand public insurer (the Earthquake Commission) was USD 6.2 billion. If a similar-sized disaster event had occurred in Japan and California, homeowners would have received only around USD 1.6 billion and USD 0.7 billion from the Japanese and Californian schemes, respectively. We further describe the spatial and distributive aspects of these scenarios and discuss some of the policy questions that emerge from this comparison. The third chapter measures the longer-term effect of the CES on the local economy, using night-time light intensity measured from space, and focus on the role of insurance payments for damaged residential property during the local recovery process. Uniquely for this event, more than 95% of residential housing units were covered by insurance and almost all incurred some damage. However, insurance payments were staggered over 5 years, enabling us to identify their local impact. We find that night-time luminosity can capture the process of recovery; and that insurance payments contributed significantly to the process of local economic recovery after the earthquake. Yet, delayed payments were less affective in assisting recovery and cash settlement of claims were more effective than insurance-managed repairs. After the Christchurch earthquakes, the government declared about 8000 houses as Red Zoned, prohibiting further developments in these properties, and offering the owners to buy them out. The government provided two options for owners: the first was full payment for both land and dwelling at the 2007 property evaluation, the second was payment for land, and the rest to be paid by the owner‘s insurance. Most people chose the second option. Using data from LINZ combined with data from Stats NZ, the fourth chapter empirically investigates what led people to choose this second option, and how peer effect influenced the homeowners‘ choices. Due to climate change, public disclosure of coastal hazard information through maps and property reports have been used more frequently by local government. This is expected to raise awareness about disaster risks in local community and help potential property owners to make informed locational decision. However, media outlets and business sector argue that public hazard disclosure will cause a negative effect on property value. Despite this opposition, some district councils in New Zealand have attempted to implement improved disclosure. Kapiti Coast district in the Wellington region serves as a case study for this research. In the fifth chapter, we utilize the residential property sale data and coastal hazard maps from the local district council. This study employs a difference-in-difference hedonic property price approach to examine the effect of hazard disclosure on coastal property values. We also apply spatial hedonic regression methods, controlling for coastal amenities, as our robustness check. Our findings suggest that hazard designation has a statistically and economically insignificant impact on property values. Overall, the risk perception about coastal hazards should be more emphasized in communities.
The ultimate goal of this study is to develop a model representing the in-plane behaviour of plasterboard ceiling diaphragms, as part of the efforts towards performance-based seismic engineering of low-rise light timber-framed (LTF) residential buildings in New Zealand (NZ). LTF residential buildings in NZ are constructed according to a prescriptive standard – NZS 3604 Timberframed buildings [1]. With regards to seismic resisting systems, LTF buildings constructed to NZS3604 often have irregular bracing arrangements within a floor plane. A damage survey of LTF buildings after the Canterbury earthquake revealed that structural irregularity (irregular bracing arrangement within a plane) significantly exacerbated the earthquake damage to LTF buildings. When a building has irregular bracing arrangements, the building will have not only translational deflections but also a torsional response in earthquakes. How effectively the induced torsion can be resolved depends on the stiffness of the floors/roof diaphragms. Ceiling and floor diaphragms in LTF buildings in NZ have different construction details from the rest of the world and there appears to be no information available on timber diaphragms typical of NZ practice. This paper presents experimental studies undertaken on plasterboard ceiling diaphragms as typical of NZ residential practice. Based on the test results, a mathematical model simulating the in-plane stiffness of plasterboard ceiling diaphragms was developed, and the developed model has a similar format to that of plasterboard bracing wall elements presented in an accompany paper by Liu [2]. With these two models, three-dimensional non-linear push-over studies of LTF buildings can be undertaken to calculate seismic performance of irregular LTF buildings.
Documenting earthquake-induced ground deformation is significant to assess the characteristics of past and contemporary earthquakes and provide insight into seismic hazard. This study uses airborne light detection and ranging (LiDAR) and conducts multi-disciplinary field techniques to document the surface rupture morphology and evaluate the paleoseismicity and seismic hazard parameters of the Hurunui segment of the Hope Fault in the northern South Island of New Zealand. It also documents and evaluates seismically induced features and ground motion characteristics of the 2010 Darfield and 2011 Christchurch earthquakes in the Port Hills, south of Christchurch. These two studies are linked in that they investigate the near-field coseismic features of large (Mw ~7.1) earthquakes in New Zealand and produce data for evaluating seismic hazards of future earthquakes. In the northern South Island of New Zealand, the Australian-Pacific plate boundary is characterised by strike-slip deformation across the Marlborough Fault System (MFS). The ENE-striking Hope Fault (length: ~230 km) is the youngest and southernmost fault in the MFS, and the second fastest slipping fault in New Zealand. The Hope Fault is a major source of seismic hazard in New Zealand and has ruptured (in-part) historically in the Mw 7.1 1888 Amuri earthquake. In the west, the Hurunui segment of the Hope Fault is covered by beech forest. Hence, its seismic hazard parameters and paleoearthquake chronology were poorly constrained and it was unknown whether the 1888 earthquake ruptured this segment or not and if so, to what extent. Utilising LiDAR and field data, a 29 km-long section of the Hurunui segment of the Hope Fault is mapped. LiDAR-mapping clearly reveals the principal slip zone (PSZ) of the fault and a suite of previously unrecognised structures that form the fault deformation zone (FDZ). FDZ width measurements from 415 locations reveal a spatially-variable, active FDZ up to ~500 m wide with an average width of 200 m. Kinematic analysis of the fault structures shows that the Hurunui segment strikes between 070° and 075° and is optimally oriented for dextral strike-slip within the regional stress field. This implies that the wide FDZ observed is unlikely to result from large-scale fault mis-orientation with respect to regional stresses. The analysis of FDZ width indicates that it increases with increased hanging wall topography and increased topographic relief suggesting that along-strike topographic perturbations to fault geometry and stress states increase fault zone complexity and width. FDZ width also increases where the tips of adjacent PSZ strands locally vary in strike, and where the thickness of alluvial deposits overlying bedrock increases. LiDAR- and photogrammetrically-derived topographic mapping indicates that the boundary between the Hurunui and Hope River segments is characterised by a ~850-m-wide right stepover and a 9º-14° fault bend. Paleoseismic trenching at Hope Shelter site reveals that 6 earthquakes occurred at A.D. 1888, 1740-1840, 1479-1623, 819-1092, 439-551, and 373- 419. These rupture events have a mean recurrence interval of ~298 ± 88 yr and inter-event times ranging from 98 to 595 yrs. The variation in the inter-event times is explained by (1) coalescing rupture overlap from the adjacent Hope River segment on to the Hurunui segment at the study site, (2) temporal clustering of large earthquakes on the Hurunui segment, and/or (3) ‘missing’ rupture events. It appears that the first two options are more plausible to explain the earthquake chronologies and rupture behaviour on the Hurunui segment, given the detailed nature of the geologic and chronologic investigations. This study provides first evidence for coseismic multi-segment ruptures on the Hope Fault by identifying a rupture length of 44-70 km for the 1888 earthquake, which was not confined to the Hope River segment (primary source for the 1888 earthquake). LiDAR data is also used to identify and measure dextral displacements and scarp heights from the PSZ and structures within the FDZ along the Hurunui segment. Reconstruction of large dextrally-offset geomorphic features shows that the vertical component of slip accounts for only ~1% of the horizontal displacements and confirms that the fault is predominantly strike-slip. A strong correlation exists between the dextral displacements and elevations of geomorphic features suggesting the possibility of age correlation between the geomorphic features. A mean single event displacement (SED) of 3.6 ± 0.7 m is determined from interpretation of sets of dextral displacements of ≤ 25 m. Using the available surface age data and the cumulative dextral displacements from Matagouri Flat, McKenzie Fan, Macs Knob and Hope River sites, and the mean SED, a mean slip rate of 12.2 ± 2.4 mm/yr, and a mean recurrence interval of ~320 ± 120 yr, and a potential earthquake magnitude of Mw 7.2 are determined for the Hurunui segment. This study suggests that the fault slip rate has been constant over the last ~15000 yr. Strong ground motions from the 2010 Darfield (Canterbury) earthquake displaced boulders and caused ground damage on some ridge crests in the Port Hills. However, the 2011 Christchurch earthquake neither displaced boulders nor caused ground damage at the same ridge crests. Documentation of locations (~400 m a.s.l.), lateral displacements (8-970 cm), displacement direction (250° ± 20°) of displaced boulders, in addition to their hosting socket geometries (< 1 cm to 50 cm depth), the orientation of the ridges (000°-015°) indicate that boulders have been displaced in the direction of instrumentally recorded transient peak ground horizontal displacements nearby and that the seismic waves have been amplified at the study sites. The co-existence of displaced and non-displaced boulders at proximal sites suggests small-scale ground motion variability and/or varying boulder-ground dynamic interactions relating to shallow phenomena such as variability in soil depth, bedrock fracture density and/or microtopography on the bedrock-soil interface. Shorter shaking duration of the 2011 Christchurch event, differing frequency contents and different source characteristics were all factors that may have contributed to generating circumstances less favourable to boulder displacement in this earthquake. Investigating seismically induced features, fault behaviour, site effects on the rupture behaviour, and site response to the seismic waves provides insights into fault rupture hazards.
Seismic behaviour of typical unreinforced masonry (URM) brick houses, that were common in early last century in New Zealand and still common in many developing countries, is experimentally investigated at University of Canterbury, New Zealand in this research. A one halfscale model URM house is constructed and tested under earthquake ground motions on a shaking table. The model structure with aspect ratio of 1.5:1 in plan was initially tested in the longitudinal direction for several earthquakes with peak ground acceleration (PGA) up to 0.5g. Toppling of end gables (above the eaves line) and minor to moderate cracking around window and door piers was observed in this phase. The structure was then rotated 90º and tested in the transverse (short) direction for ground motions with PGA up to 0.8g. Partial out-of-plane failure of the face loaded walls in the second storey and global rocking of the model was observed in this phase. A finite element analysis and a mechanism analysis are conducted to assess the dynamic properties and lateral strength of the model house. Seismic fragility function of URM houses is developed based on the experimental results. Damping at different phases of the response is estimated using an amplitude dependent equivalent viscous damping model. Financial risk of similar URM houses is then estimated in term of expected annual loss (EAL) following a probabilistic financial risk assessment framework. Risks posed by different levels of damage and by earthquakes of different frequencies are then examined.
The assessment of damage and remaining capacity after an earthquake is an immediate measure to determine whether a reinforced concrete (RC) building is usable and safe for occupants. The recent Christchurch earthquake (22 February 2011) caused a uniquely severe level of structural damage to modern buildings, resulting in extensive damage to the building stock. About 60% of damaged multistorey concrete buildings (3 storeys and up) were demolished after the earthquake, and the cost of reconstruction amounted to 40 billion NZD. The aftermath disclosed issues of great complexities regarding the future of the RC buildings damaged by the earthquakes. This highlighted the importance of post-event decision-making, as the outcome will allow the appropriate course of action—demolition, repair or acceptance of the existing building—to be considered. To adopt the proper strategy, accurate assessment of the residual capacity and the level of damage is required. This doctoral dissertation aims to assess the damage and remaining capacity at constituent material and member level (i.e., concrete material and beams) through a systematic approach in an attempt to address part of an existing gap in the available literature. Since the residual capacity of RC members is not unique and depends on previously applied loading history, post-event residual capacity in this study was assessed in terms of fraction of fatigue life (i.e., the number of cycles required to failure). This research comprises three main parts: (1) residual capacity and damage assessment at material level (i.e., concrete), (2) post-yield bond deterioration and damage assessment at the interface of steel and concrete, and, finally, (3) residual capacity and damage assessment at member level (i.e., RC beam). The first part of this research focused on damage assessment and the remaining capacity of concrete from a material point of view. It aimed to employ appropriate and reliable durability-based testing and image-detection techniques to quantify deterioration in the mechanical properties of concrete on the basis that stress-induced damage occurred in the microstructural system of the concrete material. To this end, in the first phase, a feasibility study was conducted in which a combination of oxygen permeability, electrical resistivity and porosity tests were assessed to determine if they were robust and reliable enough to reveal damage which occurred in the microstructural system of concrete. The results, in terms of change in permeability, electrical resistivity and porosity features of disk samples taken from the middle third of damaged concrete cylinders (200 mm × 100 mm) monotonically pre-loaded to 50%, 70%, 90% and 95% of the ultimate strength (f′c), showed the permeability test is a reliable tool to identify the degree of damage, due to its high sensitivity to the load-induced microcracking. In parallel, to determine the residual capacity, the companion damaged concrete cylinders already loaded to the same level of compressive strength were reloaded up to failure. Comparing the stress–strain relationship of damaged concrete with intact material, it was also found that the strain capacity of the reloaded pre-damaged concrete cylinders decreases while strength remained virtually unchanged. In the second phase of the first part, a fluorescent microscopy technique was used to assess the damage and develop a correlation between material degradation, by virtue of the geometrical features, and damage to the concrete. To account for the effect of confinement and cyclic loading, in the third phase, the residual capacity and damage assessment of unconfined and GFRP confined concrete cylinders subjected to low-cycle fatigue loading, was investigated. Similar to the first phase, permeability testing technique was used to provide an indirect evaluation of fatigue damage. Finally, in the fourth phase of the first part, the suitability of permeability testing technique to assess damage was evaluated for cored concrete taken from three types of RC members: columns, beams and a beam-column joint. In view of the fact that the composite action of an RC member is highly dependent on the bond between reinforcement and surrounding concrete, understanding the deterioration of the bond in the post-yield range of strain in steel was crucial to assess damage at member level. Therefore, in the second phase of this research, a state-of-the- art distributed fibre optic strain sensor system (DFOSSS) system was used to evaluate bond deterioration in a cantilever RC beam subjected to monotonic lateral loading. The technology allowed the continuous capture of strain, every 2.6 mm along the length, in both reinforcing bars and cover concrete. The strain profile provided a basis by which the slip, axial stress and bond stress distributions were then established. In the third part, the study focused on the damage assessment and residual capacity of seven half-scale RC beams subjected to a constant-amplitude cyclic loading protocol. In the first stage, the structural performances of three specimens under constant-amplitude fatigue at 1%, 2% and 4% chord rotation (drift) were examined. In parallel, the number of cycles to failure, degradation in strength, stiffness and energy dissipation were characterized. In the second stage, four RC beams were subjected to loading up to 70% and 90% of their fatigue life, at 2% and 4% drift, and then monotonically pulled up to failure. To determine the residual flexural capacity, the lateral force–displacement results of pre-damaged specimens were compared with an undamaged specimen subjected to only monotonic loading. The study showed significant losses in strength, deformability, stiffness and energy dissipation capacity. A nonlinear finite element analysis (FEA) using concrete damage plasticity (CDP) model was also conducted in ABAQUS to numerically investigate the behaviour of the tested specimen. The results of the FE simulations indicated a reasonable response compared with the behaviour of the test specimen in terms of force–displacement and cracking pattern. During the Christchurch earthquake it was observed that the loading history has a significant influence on structural responses. While in conventional pseudo-static loading protocol, internal forces can be redistributed along the plastic length: there is little chance for structures undergoing high initial loading amplitude to redistribute pertinent stresses. As a result, in the third phase of this part, the effect of high rate of loading on the behaviour of seismically designed RC beams was investigated. Two half-scale cantilever RC beams were subjected to similar constant-amplitude cyclic loading at 2% and 4% drifts, but at a rate of 500 mm/s. Due to the incapability of conventional measuring techniques, a motion-tracking system was employed for data acquisition with the high-speed tests. The effect of rate of loading on the fatigue life of specimens (i.e., the number of cycles required to failure), secant stiffness, failure mode, cracking pattern, beam elongations and bar fracture surface were analysed. Integrating the results of all parts of this research has resulted in a better understanding of residual capacity and the development of damage at both the material and member level by using a low-cycle fatigue approach.
This article argues that active coordination of research engagement after disasters has the potential to maximize research opportunities, improve research quality, increase end-user engagement, and manage escalating research activity to mitigate ethical risks posed to impacted populations. The focus is on the coordination of research activity after the 22nd February 2011 Mw6.2 Christchurch earthquake by the then newly-formed national research consortium, the Natural Hazards Research Platform, which included a social science research moratorium during the declared state of national emergency. Decisions defining this organisation’s functional and structural parameters are analyzed to identify lessons concerning the need for systematic approaches to the management of post disaster research, in collaboration with the response effort. Other lessons include the importance of involving an existing, broadly-based research consortium, ensuring that this consortium's coordination role is fully integrated into emergency management structures, and ensuring that all aspects of decision-making processes are transparent and easily accessed.
Background: Earthquakes are found to have lingering post-disaster effects on children that can be present for months or years after the disaster, including hyperarousal symptoms. Young children have the most difficulties in regulating their emotions, especially when they are highly aroused. Colouring-in mandala designs have been found to reduce hyperarousal symptoms of stress in young adults. The purpose of this study was to determine if the same effects of colouring-in mandalas would be seen with children showing signs of hyperarousal. Research Question: To identify what effect colouring-in mandala designs would have on the heart rate in a young child showing signs of hyperarousal. Method: Following approved procedures for informed consent, two 6-year-old girls from a Christchurch primary school were chosen for the study. Heart rate was measured using a Fitbit in a single subject design. The baseline, colouring-in and a second baseline phase were conducted during mathematics. The participants and their teacher reported on arousal, enjoyment, and positive and problem behaviours. The study took 26 school days to complete. Results: Compared with baseline, the average heart rate data showed no decrease in heart rate (i.e., calming effect) during the mandala colouring-in task phase. Conclusions: The participants enjoyed colouring-in the mandalas, but the average heart rate data did not show that colouring-in pre-drawn designs reduced heart rate, a measure of arousal. Major study limitations included; not having suitable participants or a suitable setting for the colouring-in task, and not being able to observe both participants.
There is a growing awareness of the need for the earthquake engineering practice to incorporate in addition to empirical approaches in evaluation of liquefaction hazards advanced methods which can more realistically represent soil behaviour during earthquakes. Currently, this implementation is hindered by a number of challenges mainly associated with the amount of data and user-experience required for such advanced methods. In this study, we present key steps of an advanced seismic effective-stress analysis procedure, which on the one hand can be fully automated and, on the other hand, requires no additional input (at least for preliminary applications) compared to simplified cone penetration test (CPT)-based liquefaction procedures. In this way, effective-stress analysis can be routinely applied for quick, yet more robust estimations of liquefaction hazards, in a similar fashion to the simplified procedures. Important insights regarding the dynamic interactions in liquefying soils and the actual system response of a deposit can be gained from such analyses, as illustrated with the application to two sites from Christchurch, New Zealand.
Extended Direct Analysis (EDA), developed at the University of Canterbury, is an advance on the AISC Direct Analysis method for the analysis of frames subjected to static forces. EDA provides a faster, simple and more rational way to properly consider the second-order effects, initial residual stresses (IRS) and the initial imperfections or steel structures under one directional loading than conventional analysis methods. This research applied the EDA method to quantify the effect of member overstrength on frame behaviour for a single storey frame. Also, the effects of IRS, which were included in the EDA static analysis, but which are not considered explicitly in non-linear seismic analysis, were evaluated in two ways. Firstly, they were considered for simple structures subject to increasing cyclic displacement in different directions. Secondly, incremental dynamic analysis with realistic ground motion was used to quantify the likely effect of IRS in earthquakes. It was found that, contrary to traditional wisdom and practice, greater member strengths can result in lower frame strengths for frames under monotonic lateral loading. The structural lateral capacity of the overstrength case was reduced by 6% compared to the case using the dependable member strengths. Also, it resulted significantly different in member demands. Therefore, it is recommended that when either plastic analysis or EDA is used, that both upper and lower bounds on the likely member strength should be considered to determine the total frame strength and the member demands. Results of push-pull analysis under displacement control showed that for IRS ratio, gamma < 0.5 and axial compressive force ratio, N*/Ns, up to 0.5, IRS did affect the structural behaviour in the first half cycle. However, the behavior in the later cycles was not significantly affected. It also showed that the effect of initial residual stresses in the frame was less significant than for the column alone when the column was subjected to similar axial compressive force. The incremental dynamic analysis results from both cantilever column and the three-storey steel frame showed that by increasing gamma = 0 to 0.5, the effect of IRS on seismic responses, based on the 50% confidence level, was less than 3% for N*/Ns, up to 0.5.
Structural engineering is facing an extraordinarily challenging era. These challenges are driven by the increasing expectations of modern society to provide low-cost, architecturally appealing structures which can withstand large earthquakes. However, being able to avoid collapse in a large earthquake is no longer enough. A building must now be able to withstand a major seismic event with negligible damage so that it is immediately occupiable following such an event. As recent earthquakes have shown, the economic consequences of not achieving this level of performance are not acceptable. Technological solutions for low-damage structural systems are emerging. However, the goal of developing a low-damage building requires improving the performance of both the structural skeleton and the non-structural components. These non-structural components include items such as the claddings, partitions, ceilings and contents. Previous research has shown that damage to such items contributes a disproportionate amount to the overall economic losses in an earthquake. One such non-structural element that has a history of poor performance is the external cladding system, and this forms the focus of this research. Cladding systems are invariably complicated and provide a number of architectural functions. Therefore, it is important than when seeking to improve their seismic performance that these functions are not neglected. The seismic vulnerability of cladding systems are determined in this research through a desktop background study, literature review, and postearthquake reconnaissance survey of their performance in the 2010 – 2011 Canterbury earthquake sequence. This study identified that precast concrete claddings present a significant life-safety risk to pedestrians, and that the effect they have upon the primary structure is not well understood. The main objective of this research is consequently to better understand the performance of precast concrete cladding systems in earthquakes. This is achieved through an experimental campaign and numerical modelling of a range of precast concrete cladding systems. The experimental campaign consists of uni-directional, quasi static cyclic earthquake simulation on a test frame which represents a single-storey, single-bay portion of a reinforced concrete building. The test frame is clad with various precast concrete cladding panel configurations. A major focus is placed upon the influence the connection between the cladding panel and structural frame has upon seismic performance. A combination of experimental component testing, finite element modelling and analytical derivation is used to develop cladding models of the cladding systems investigated. The cyclic responses of the models are compared with the experimental data to evaluate their accuracy and validity. The comparison shows that the cladding models developed provide an excellent representation of real-world cladding behaviour. The cladding models are subsequently applied to a ten-storey case-study building. The expected seismic performance is examined with and without the cladding taken into consideration. The numerical analyses of the case-study building include modal analyses, nonlinear adaptive pushover analyses, and non-linear dynamic seismic response (time history) analyses to different levels of seismic hazard. The clad frame models are compared to the bare frame model to investigate the effect the cladding has upon the structural behaviour. Both the structural performance and cladding performance are also assessed using qualitative damage states. The results show a poor performance of precast concrete cladding systems is expected when traditional connection typologies are used. This result confirms the misalignment of structural and cladding damage observed in recent earthquake events. Consequently, this research explores the potential of an innovative cladding connection. The outcomes from this research shows that the innovative cladding connection proposed here is able to achieve low-damage performance whilst also being cost comparable to a traditional cladding connection. It is also theoretically possible that the connection can provide a positive value to the seismic performance of the structure by adding addition strength, stiffness and damping. Finally, the losses associated with both the traditional and innovative cladding systems are compared in terms of tangible outcomes, namely: repair costs, repair time and casualties. The results confirm that the use of innovative cladding technology can substantially reduce the overall losses that result from cladding damage.
High-Force-to-Volume lead dampers (HF2V) have been recently developed through an experimental research program at University of Canterbury – New Zealand. Testing of the device and applications on beam column joints have demonstrated stable hysteretic behaviour with almost no damage. This paper reports testing of HF2V devices with straight, bulged and constricted shaft configurations subjected to velocities of 0.15 - 5.0mm/s. The effect of the shaft configuration on the hysteresis loop shape, design relationships and the effect of the velocity on the resistive force of the device are described. Results show that hysteresis loop shape of the device is almost square regardless of the shaft configuration, and that devices are characterized by noticeable velocity dependence in the range of 0.15-1.0mm/s.
This poster provides a summary of the development of a 3D shallow (z<40m) shear wave velocity (Vs) model for the urban Christchurch, New Zealand region. The model is based on a recently developed Christchurch-specific empirical correlation between Vs and cone penetration test (CPT) data (McGann et al. 2014a,b) and the large high-density database of CPT logs in the greater Christchurch urban area (> 15,000 logs as of 01/01/2014). In particular, the 3D model provides shear wave velocities for the surficial Springston Formation, Christchurch Formation, and Riccarton gravel layers which generally comprise the upper 40m in the Christchurch urban area. Point-estimates are provided on a 200m-by- 200m grid from which interpolation to other locations can be performed. This model has applications for future site characterization and numerical modeling efforts via maps of timeaveraged Vs over specific depths (e.g. Vs30, Vs10) and via the identification of typical Vs profiles for different regions and soil behaviour types within Christchurch. In addition, the Vs model can be used to constrain the near-surface velocities for the 3D seismic velocity model of the Canterbury basin (Lee et al. 2014) currently being developed for the purpose of broadband ground motion simulation.
Four cartoons in the same frame commenting on news and happenings in the week ending 15 December 2011. The cartoons refer to the expulsion of the controversial Member of Parliament, Brendan Horan, from the New Zealand First Party by its leader, Winston Peters; the stereotyping of New Zealand as being 'Middle Earth' following the filming of 'The Hobbit', punned as 'The Habbit'; the lax attitude to building design and standards, which led to the CTV Building disaster in the Christchurch earthquake; the news about the New Zealand SPCA teaching dogs to drive.
Quantity: 1 digital cartoon(s).
Sewerage systems convey sewage, or wastewater, from residential or commercial buildings through complex reticulation networks to treatment plants. During seismic events both transient ground motion and permanent ground deformation can induce physical damage to sewerage system components, limiting or impeding the operability of the whole system. The malfunction of municipal sewerage systems can result in the pollution of nearby waterways through discharge of untreated sewage, pose a public health threat by preventing the use of appropriate sanitation facilities, and cause serious inconvenience for rescuers and residents. Christchurch, the second largest city in New Zealand, was seriously affected by the Canterbury Earthquake Sequence (CES) in 2010-2011. The CES imposed widespread damage to the Christchurch sewerage system (CSS), causing a significant loss of functionality and serviceability to the system. The Christchurch City Council (CCC) relied heavily on temporary sewerage services for several months following the CES. The temporary services were supported by use of chemical and portable toilets to supplement the damaged wastewater system. The rebuild delivery agency -Stronger Christchurch Infrastructure Rebuild Team (SCIRT) was created to be responsible for repair of 85 % of the damaged horizontal infrastructure (i.e., water, wastewater, stormwater systems, and roads) in Christchurch. Numerous initiatives to create platforms/tools aiming to, on the one hand, support the understanding, management and mitigation of seismic risk for infrastructure prior to disasters, and on the other hand, to support the decision-making for post-disaster reconstruction and recovery, have been promoted worldwide. Despite this, the CES in New Zealand highlighted that none of the existing platforms/tools are either accessible and/or readable or usable by emergency managers and decision makers for restoring the CSS. Furthermore, the majority of existing tools have a sole focus on the engineering perspective, while the holistic process of formulating recovery decisions is based on system-wide approach, where a variety of factors in addition to technical considerations are involved. Lastly, there is a paucity of studies focused on the tools and frameworks for supporting decision-making specifically on sewerage system restoration after earthquakes. This thesis develops a decision support framework for sewerage pipe and system restoration after earthquakes, building on the experience and learning of the organisations involved in recovering the CSS following the CES in 2010-2011. The proposed decision support framework includes three modules: 1) Physical Damage Module (PDM); 2) Functional Impact Module (FIM); 3) Pipeline Restoration Module (PRM). The PDM provides seismic fragility matrices and functions for sewer gravity and pressure pipelines for predicting earthquake-induced physical damage, categorised by pipe materials and liquefaction zones. The FIM demonstrates a set of performance indicators that are categorised in five domains: structural, hydraulic, environmental, social and economic domains. These performance indicators are used to assess loss of wastewater system service and the induced functional impacts in three different phases: emergency response, short-term recovery and long-term restoration. Based on the knowledge of the physical and functional status-quo of the sewerage systems post-earthquake captured through the PDM and FIM, the PRM estimates restoration time of sewer networks by use of restoration models developed using a Random Forest technique and graphically represented in terms of restoration curves. The development of a decision support framework for sewer recovery after earthquakes enables decision makers to assess physical damage, evaluate functional impacts relating to hydraulic, environmental, structural, economic and social contexts, and to predict restoration time of sewerage systems. Furthermore, the decision support framework can be potentially employed to underpin system maintenance and upgrade by guiding system rehabilitation and to monitor system behaviours during business-as-usual time. In conjunction with expert judgement and best practices, this framework can be moreover applied to assist asset managers in targeting the inclusion of system resilience as part of asset maintenance programmes.
This report presents the simplified seismic assessment of a case study reinforced concrete (RC) building following the newly developed and refined NZSEE/MBIE guidelines on seismic assessment (NZSEE/MBIE, semi-final draft 26 October 2016). After an overview of the step-by-step ‘diagnostic’ process, including an holistic and qualitative description of the expected vulnerabilities and of the assessment strategy/methodology, focus is given, whilst not limited, to the implementation of a Detailed Seismic Assessment (DSA) (NZSEE/MBIE, 2016c). The DSA is intended to provide a more reliable and consistent outcome than what can be provided by an initial seismic assessment (ISA). In fact, while the Initial Seismic Assessment (ISA), of which the Initial Evaluation Procedure is only a part of, is the more natural and still recommended first step in the overall assessment process, it is mostly intended to be a coarse evaluation involving as few resources as reasonably possible. It is thus expected that an ISA will be followed by a Detailed Seismic Assessment (DSA) not only where the threshold of 33%NBS is not achieved but also where important decisions are intended that are reliant on the seismic status of the building. The use of %NBS (% New Building Standard) as a capacity/demand ratio to describe the result of the seismic assessment at all levels of assessment procedure (ISA through to DSA) is deliberate by the NZSEE/MBIE guidelines (Part A) (NZSEE/MBIE 2016a). The rating for the building needs only be based on the lowest level of assessment that is warranted for the particular circumstances. Discussion on how the %NBS rating is to be determined can be found in Section A3.3 (NZSEE/MBIE 2016a), and, more specifically, in Part B for the ISA (NZSEE/MBIE 2016b) and Part C for the DSA (NZSEE/MBIE 2016c). As per other international approaches, the DSA can be based on several analysis procedures to assess the structural behaviour (linear, nonlinear, static or dynamic, force or displacement-based). The significantly revamped NZSEE 2016 Seismic Assessment Guidelines strongly recommend the use of an analytical (basically ‘by hand’) method, referred to the Simple Lateral Mechanism Analysis (SLaMA) as a first phase of any other numerically-based analysis method. Significant effort has thus been dedicated to provide within the NZSEE 2016 guidelines (NZSEE/MBIE 2016c) a step-by-step description of the procedure, either in general terms (Chapter 2) or with specific reference to Reinforced Concrete Buildings (Chapter 5). More specifically, extract from the guidelines, NZSEE “recommend using the Simple Lateral Mechanism Analysis (SLaMA) procedure as a first step in any assessment. While SLaMA is essentially an analysis technique, it enables assessors to investigate (and present in a simple form) the potential contribution and interaction of a number of structural elements and their likely effect on the building’s global capacity. In some cases, the results of a SLaMA will only be indicative. However, it is expected that its use should help assessors achieve a more reliable outcome than if they only carried out a detailed analysis, especially if that analysis is limited to the elastic range For complex structural systems, a 3D dynamic analysis may be necessary to supplement the simplified nonlinear Simple Lateral Mechanism Analysis (SLaMA).” This report presents the development of a full design example for the the implementation of the SLaMA method on a case study buildings and a validation/comparison with a non-linear static (pushover) analysis. The step-by-step-procedure, summarized in Figure 1, will be herein demonstrated from a component level (beams, columns, wall elements) to a subassembly level (hierarchy of strength in a beam-column joint) and to a system level (frame, C-Wall) assuming initially a 2D behaviour of the key structural system, and then incorporating a by-hand 3D behaviour (torsional effects).
There is a growing body of research into the effects of micronutrients on human mental health. There is evidence that multi-ingredient formulas are beneficial especially in relation to serious mental health disorders such as mood and anxiety disorders, attention-deficit hyperactivity disorder and obsessive-compulsive disorders. However there is almost no scientific research which looks at the effects of these formulas in an animal population. Therefore the aim of this study was to investigate the effects of a micronutrient formula, EMPowerplus, on anxiety behaviour in rats, and whether there is a relationship between dose and anxiolytic effect. In order to investigate this 40 male and 40 female rats received a diet consisting of either 0%, 1.25%, 2.5% or 5% EMP+ from when they were weaned (post natal day 30) until the end of testing 141 days later. Animals were tested in a Y maze, a light-dark emergence box and an open field at mid-adulthood (PND 136-138) and late adulthood (PND 186-188). Results found that animals receiving the 5% supplemented diet occupied the centre squares the most, occupied the corner squares the least and ambulated the most in the open field compared to the other experimental groups and control groups. No significant differences were found in the Y maze or Light-dark box. Animals were found to display more anxiety-like behaviour at time 2 than at time 1 regardless of receiving a supplemented diet or not. Overall a higher dose of EMP+ was associated with the greatest reduction in anxiety related behaviour. Due to the impact of the September 4th, 2010 Canterbury Earthquake caution should be taken when interpreting these results.