Search

found 121 results

Images, UC QuakeStudies

A photograph of the rubble of the Observatory tower in the South Quad of the Christchurch Arts Centre. The tower collapsed during the 22 February 2011 earthquake. A digger was used to clear the rubble away from the building. In the foreground is Chris Whitty, Site Manager of the Christchurch Arts Centre.

Images, UC QuakeStudies

A portaloo ouside an apartment building, on the wall next to it is a red sticker, informing the public the site is dangerous and not to enter. On the other side are spray painted codes left by USAR after it had been cleared. This system was used following the February earthquake to mark buildings that have been checked.

Images, UC QuakeStudies

Damage to the church hall of St John the Baptist Church in Latimer Square. Masonry has fallen from one of the building's gables and has been piled against its base. The site has been enclosed in a safety fence. A spray-painted sign can be seen at the base of the building reading, "Danger! Wall unstable, stay clear". A piece of plywood is also visible weather proofing the building's roof.

Research papers, University of Canterbury Library

This manuscript provides a critical examination of the ground motions recorded in the near-source region resulting from the 22 February 2011 Christchurch earthquake. Particular attention is given to reconciling the observed spatial distribution of ground motions in terms of physical phenomena related to source, path and site effects. The large number of near-source observed strong ground motions show clear evidence of: forward-directivity, basin generated surface waves, liquefaction and other significant nonlinear site response. The pseudo-acceleration response spectra (SA) amplitudes and significant duration of strong motions agree well with empirical prediction models, except at long vibration periods where the influence of basin-generated surface waves and nonlinear site response are significant and not adequately accounted for in empirical SA models. Pseudo-acceleration response spectra are also compared with those observed in the 4 September 2010 Darfield earthquake and routine design response spectra used in order to emphasise the amplitude of ground shaking and elucidate the importance of local geotechnical characteristics on surface ground motions. The characteristics of the observed vertical component accelerations are shown to be strongly dependent on source-to-site distance and are comparable with those from the 4 September 2010 Darfield earthquake, implying the large amplitudes observed are simply a result of many observations at close distances rather than a peculiar source effect.