A video of a presentation by Garry Williams during the fourth plenary of the 2016 People in Disasters Conference. Williams is the Programme Manager of the Ministry of Education's Greater Christchurch Education Renewal Programme. The presentation is titled, "Education Renewal: A section response to the February 2011 Christchurch earthquake".The abstract for this presentation reads as follows: The Canterbury earthquakes caused a disaster recovery situation unparalleled in New Zealand's history. In addition to widespread damage to residential dwellings and destruction of Christchurch's central business district, the earthquakes damaged more than 200 schools from Hurunui in the north, to the Mackenzie District in the east, and Timaru in the south. The impact on education provision was substantial, with the majority of early childhood centres, schools and tertiary providers experiencing damage or subsequent, with the majority of early childhood centres, schools and tertiary providers experiencing damage or subsequent operational issues caused by the ensuing migration of people. Following the February earthquake, over 12,000 students had left the school they had been attending and enrolled elsewhere - often at a school outside the region. Shortened school days and compression of teaching into short periods meant shift-sharing students engaged in the curriculum being delivered in more diverse ways. School principals and staff reported increased fatigue and stress and changes in student behaviours, often related to repeated exposure to and ongoing reminders of the trauma of the earthquakes. While there has been a shift from direct, trauma-related presentations to the indirect effects of psychological adversity and daily life stresses, international experiences tells us that psychological recovery generally lags behind the immediate physical recovery and rebuilding. The Ministries of Health and Education and the Canterbury District Health Board have developed and implemented a joint action plan to address specifically the emerging mental health issues for youth in Canterbury. However, the impact of vulnerable and stressed adults on children's behaviour contributes to the overall impact of ongoing wellbeing issues on the educational outcomes for the community. There is substantial evidence supporting the need to focus on adults' resilience so they can support children and youth. Much of the Ministry's work around supporting children under stress is through supporting the adults responsible for teaching them and leading their schools. The education renewal programme exists to assist education communities to rebuild and look toward renewal. The response to the earthquakes provides a significant opportunity to better meet the needs and aspirations of children and youth people. All the parents want to see their children eager to learn, achieving success, and gaining knowledge and skills that will, in time, enable them to become confident, adaptable, economically independent adults. But this is not always the case, hence our approach to education renewal seeks to address inequities and improve outcome, while prioritising actions that will have a positive impact on learners in greatest need of assistance.
We present ground motion simulations of the Porters Pass (PP) fault in the Canterbury region of New Zealand; a major active source near Christchurch city. The active segment of the PP fault has an inferred length of 82 km and a mostly strike-slip sense of movement. The PP fault slip makes up approximately 10% of the total 37 mm/yr margin-parallel plate motion and also comprises a significant proportion of the total strain budget in regional tectonics. Given that the closest segment of the fault is less than 45 km from Christchurch city, the PP fault is crucial for accurate earthquake hazard assessment for this major population centre. We have employed the hybrid simulation methodology of Graves and Pitarka (2010, 2015), which combines low (f<1 Hz) and high (f>1 Hz) frequencies into a broadband spectrum. We have used validations from three moderate magnitude events (𝑀𝑤4.6 Sept 04, 2010; 𝑀𝑤4.6 Nov 06, 2010; 𝑀𝑤4.9 Apr 29, 2011) to build confidence for the 𝑀𝑤 > 7 PP simulations. Thus far, our simulations include multiple rupture scenarios which test the impacts of hypocentre location and the finite-fault stochastic rupture representation of the source itself. In particular, we have identified the need to use location-specific 1D 𝑉𝑠/𝑉𝑝 models for the high frequency part of the simulations to better match observations.
A review of the literature showed the lack of a truly effective damage avoidance solution for timber or hybrid timber moment resisting frames (MRFs). Full system damage avoidance selfcentring behaviour is difficult to achieve with existing systems due to damage to the floor slab caused by beam-elongation. A novel gravity rocking, self-centring beam-column joint with inherent and supplemental friction energy dissipation is proposed for low-medium rise buildings in all seismic zones where earthquake actions are greater than wind. Steel columns and timber beams are used in the hybrid MRF such that both the beam and column are continuous thus avoiding beam-elongation altogether. Corbels on the columns support the beams and generate resistance and self-centring through rocking under the influence of gravity. Supplemental friction sliders at the top of the beams resist sliding of the floor whilst dissipating energy as the floor lifts on the corbels and returns. 1:20 scale tests of 3-storey one-by-two bay building based on an earlier iteration of the proposed concept served as proof-of-concept and highlighted areas for improvement. A 1:5 scale 3-storey one-by-one bay building was subsequently designed. Sub-assembly tests of the beam-top asymmetric friction sliders demonstrated repeatable hysteresis. Quasi-static tests of the full building demonstrated a ‘flat bottomed’ flag-shaped hysteresis. Shake table tests to a suite of seven earthquakes scaled for Wellington with site soil type D to the serviceability limit state (SLS), ultimate limit state (ULS) and maximum credible event (MCE) intensity corresponding to an average return period of 25, 500 and 2500 years respectively were conducted. Additional earthquake records from the 22 February 2011 Christchurch earthquakes we included. A peak drift of 0.6%, 2.5% and 3.8% was reached for the worst SLS, ULS and MCE earthquake respectively whereas a peak drift of 4.5% was reached for the worst Christchurch record for tests in the plane of the MRF. Bi-directional tests were also conducted with the building oriented at 45 degrees on the shake table and the excitation factored by 1.41 to maintain the component in the direction of the MRF. Shear walls with friction slider hold-downs which reached similar drifts to the MRF were provided in the orthogonal direction. Similar peak drifts were reached by the MRF in the bi-directional tests, when the excitation was amplified as intended. The building self-centred with a maximum residual drift of 0.06% in the dynamic tests and demonstrated no significant damage. The member actions were magnified by up to 100% due to impact upon return of the floor after uplift when the peak drift reached 4.5%. Nonetheless, all of the members and connections remained essentially linearelastic. The shake table was able to produce a limited peak velocity of 0.275 m/s and this limited the severity of several of the ULS, MCE and Christchurch earthquakes, especially the near-field records with a large velocity pulse. The full earthquakes with uncapped velocity were simulated in a numerical model developed in SAP2000. The corbel supports were modelled with the friction isolator link element and the top sliders were modelled with a multi-linear plastic link element in parallel with a friction spring damper. The friction spring damper simulated the increase in resistance with increasing joint rotation and a near zero return stiffness, as exhibited by the 1:5 scale test building. A good match was achieved between the test quasi-static global force-displacement response and the numerical model, except a less flat unloading curve in the numerical model. The peak drift from the shake table tests also matched well. Simulations were also run for the full velocity earthquakes, including vertical ground acceleration and different floor imposed load scenarios. Excessive drift was predicted by the numerical model for the full velocity near-field earthquakes at the MCE intensity and a rubber stiffener for increasing the post joint-opening stiffness was found to limit the drift to 4.8%. Vertical ground acceleration had little effect on the global response. The system generates most of its lateral resistance from the floor weight, therefore increasing the floor imposed load increased the peak drift, but less than it would if the resistance of the system did not increase due to the additional floor load. A seismic design procedure was discussed under the framework of the existing direct displacement-based design method. An expression for calculating the area-based equivalent viscous damping (EVD) was derived and a conservative correction factor of 0.8 was suggested. A high EVD of up to about 15% can be achieved with the proposed system at high displacement ductility levels if the resistance of the top friction sliders is maximised without compromising reliable return of the floor after uplift. Uniform strength joints with an equal corbel length up the height of the building and similar inter-storey drifts result in minimal relative inter-floor uplift, except between the first floor and ground. Guidelines for detailing the joint for damage avoidance including bi-directional movement were also developed.
The University of Canterbury is known internationally for the Origins of New Zealand English (ONZE) corpus (see Gordon et al 2004). ONZE is a large collection of recordings from people born between 1851 and 1984, and it has been widely utilised for linguistic and sociolinguistic research on New Zealand English. The ONZE data is varied. The recordings from the Mobile Unit (MU) are interviews and were collected by members of the NZ Broadcasting service shortly after the Second World War, with the aim of recording stories from New Zealanders outside the main city centres. These were supplemented by interview recordings carried out mainly in the 1990s and now contained in the Intermediate Archive (IA). The final ONZE collection, the Canterbury Corpus, is a set of interviews and word-list recordings carried out by students at the University of Canterbury. Across the ONZE corpora, there are different interviewers, different interview styles and a myriad of different topics discussed. In this paper, we introduce a new corpus – the QuakeBox – where these contexts are much more consistent and comparable across speakers. The QuakeBox is a corpus which consists largely of audio and video recordings of monologues about the 2010-2011 Canterbury earthquakes. As such, it represents Canterbury speakers’ very recent ‘danger of death’ experiences (see Labov 2013). In this paper, we outline the creation and structure of the corpus, including the practical issues involved in storing the data and gaining speakers’ informed consent for their audio and video data to be included.
The skills agenda has grown in prominence within the construction industry. Indeed, skill shortages have been recognised as a perennial problem the construction industry faces, especially after a major disaster. In the aftermath of the Christchurch earthquakes, small and medium construction companies were at the forefront of rebuilding efforts. While the survival of these companies was seen to be paramount, and extreme events were seen to be a threat to survival, there is a dearth of research centring on their resourcing capacity following a disaster. This research aims to develop workforce resourcing best practice guidelines for subcontractors in response to large disaster reconstruction demands. By using case study methods, this research identified the challenges faced by subcontracting businesses in resourcing Christchurch recovery projects; identified the workforce resourcing strategies adopted by subcontracting businesses in response to reconstruction demand; and developed a best practice guideline for subcontracting businesses in managing the workforce at the organisational and/or project level. This research offers a twofold contribution. First, it provides an overview of workforce resourcing practices in subcontracting businesses. This understanding has enabled the development of a more practical workforce resourcing guideline for subcontractors. Second, it promotes evidence-informed decision-making in subcontractors’ workforce resourcing. Dynamics in workforce resourcing and their multifaceted interactions were explicitly depicted in this research. More importantly, this research provides a framework to guide policy development in producing a sustainable solution to skill shortages and establishing longterm national skill development initiatives. Taken together, this research derives a research agenda that maps under-explored areas relevant for further elaboration and future research. Prospective researchers can use the research results in identifying gaps and priority areas in relation to workforce resourcing.
Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km²), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management.
A video of the keynote presentation by Alexander C. McFarlane during the third plenary of the 2016 People in Disasters Conference. McFarlane is a Professor of Psychiatry at the University of Adelaide and the Heady of the Centre for Traumatic Stress Studies. The presentation is titled, "Holding onto the Lessons Disasters Teach".The abstract for this presentation reads as follows: Disasters are sentinel points in the life of the communities affected. They bring an unusual focus to community mental health. In so doing, they provide unique opportunities for better understanding and caring for communities. However, one of the difficulties in the disaster field is that many of the lessons from previous disasters are frequently lost. If anything, Norris (in 2006) identified that the quality of disaster research had declined over the previous 25 years. What is critical is that a longitudinal perspective is taken of representative cohorts. Equally, the impact of a disaster should always be judged against the background mental health of the communities affected, including emergency service personnel. Understandably, many of those who are particularly distressed in the aftermath of a disaster are people who have previously experienced a psychiatric disorder. It is important that disaster services are framed against knowledge of this background morbidity and have a broad range of expertise to deal with the emerging symptoms. Equally, it is critical that a long-term perspective is considered rather than short-term support that attempts to ameliorate distress. Future improvement of disaster management depends upon sustaining a body of expertise dealing with the consequences of other forms of traumatic stress such as accidents. This expertise can be redirected to co-ordinate and manage the impact of larger scale events when disasters strike communities. This presentation will highlight the relevance of these issues to the disaster planning in a country such as New Zealand that is prone to earthquakes.
On 14 November 2016, a magnitude (Mw) 7.8 earthquake struck the small coastal settlement of Kaikōura, Aotearoa-New Zealand. With an economy based on tourism, agriculture, and fishing, Kaikōura was immediately faced with significant logistical, economic, and social challenges caused by damage to critical infrastructure and lifelines, essential to its main industries. Massive landslips cut offroad and rail access, stranding hundreds of tourists, and halting the collection, processing and distribution of agricultural products. At the coast, the seabed rose two metres, limiting harbour-access to high tide, with implications for whale watching tours and commercial fisheries. Throughout the region there was significant damage to homes, businesses, and farmland, leaving owners and residents facing an uncertain future. This paper uses qualitative case study analysis to explore post-quake transformations in a rural context. The aim is to gain insight into the distinctive dynamics of disaster response mechanisms, focusing on two initiatives that have emerged in direct response to the disaster. The first examines the ways in which agriculture, food harvesting, production and distribution are being reimagined with the potential to enhance regional food security. The second examines the rescaling of power in decision-making processes following the disaster, specifically examining the ways in which rural actors are leveraging networks to meet their needs and the consequences of that repositioning on rural (and national) governance arrangements. In these and other ways, the local economy is being revitalised, and regional resilience enhanced through diversification, capitalising not on the disaster but the region's natural, social, and cultural capital. Drawing on insights and experience of local stakeholders, policy- and decision-makers, and community representatives we highlight the diverse ways in which these endeavours are an attempt to create something new, revealing also the barriers which needed to be overcome to reshape local livelihoods. Results reveal that the process of transformation as part of rural recovery must be grounded in the lived reality of local residents and their understanding of place, incorporating and building on regional social, environmental, and economic characteristics. In this, the need to respond rapidly to realise opportunities must be balanced with the community-centric approach, with greater recognition given to the contested nature of the decisions to be made. Insights from the case examples can inform preparedness and recovery planning elsewhere, and provide a rich, real-time example of the ways in which disasters can create opportunities for reimagining resilient futures.
A video of a presentation by Professor David Johnston during the fourth plenary of the 2016 People in Disasters Conference. Johnston is a Senior Scientist at GNS Science and Director of the Joint Centre for Disaster Research in the School of Psychology at Massey University. The presentation is titled, "Understanding Immediate Human Behaviour to the 2010-2011 Canterbury Earthquake Sequence, Implications for injury prevention and risk communication".The abstract for the presentation reads as follows: The 2010 and 2011 Canterbury earthquake sequences have given us a unique opportunity to better understand human behaviour during and immediately after an earthquake. On 4 September 2010, a magnitude 7.1 earthquake occurred near Darfield in the Canterbury region of New Zealand. There were no deaths, but several thousand people sustained injuries and sought medical assistance. Less than 6 months later, a magnitude 6.2 earthquake occurred under Christchurch City at 12:51 p.m. on 22 February 2011. A total of 182 people were killed in the first 24 hours and over 7,000 people injured overall. To reduce earthquake casualties in future events, it is important to understand how people behaved during and immediately after the shaking, and how their behaviour exposed them to risk of death or injury. Most previous studies have relied on an analysis of medical records and/or reflective interviews and questionnaire studies. In Canterbury we were able to combine a range of methods to explore earthquake shaking behaviours and the causes of injuries. In New Zealand, the Accident Compensation Corporation (a national health payment scheme run by the government) allowed researchers to access injury data from over 9,500 people from the Darfield (4 September 2010) and Christchurch (22 February 2011 ) earthquakes. The total injury burden was analysed for demography, context of injury, causes of injury, and injury type. From the injury data inferences into human behaviour were derived. We were able to classify the injury context as direct (immediate shaking of the primary earthquake or aftershocks causing unavoidable injuries), and secondary (cause of injury after shaking ceased). A second study examined people's immediate responses to earthquakes in Christchurch New Zealand and compared responses to the 2011 earthquake in Hitachi, Japan. A further study has developed a systematic process and coding scheme to analyse earthquake video footage of human behaviour during strong earthquake shaking. From these studies a number of recommendations for injury prevention and risk communication can be made. In general, improved building codes, strengthening buildings, and securing fittings will reduce future earthquake deaths and injuries. However, the high rate of injuries incurred from undertaking an inappropriate action (e.g. moving around) during or immediately after an earthquake suggests that further education is needed to promote appropriate actions during and after earthquakes. In New Zealand - as in US and worldwide - public education efforts such as the 'Shakeout' exercise are trying to address the behavioural aspects of injury prevention.