Search

found 127 results

Research papers, The University of Auckland Library

High demolition rates were observed in New Zealand after the 2010-2011 Canterbury Earthquake Sequence despite the success of modern seismic design standards to achieve required performance objectives such as life safety and collapse prevention. Approximately 60% of the multi-storey reinforced concrete (RC) buildings in the Christchurch Central Business District were demolished after these earthquakes, even when only minor structural damage was present. Several factors influenced the decision of demolition instead of repair, one of them being the uncertainty of the seismic capacity of a damaged structure. To provide more insight into this topic, the investigation conducted in this thesis evaluated the residual capacity of moderately damaged RC walls and the effectiveness of repair techniques to restore the seismic performance of heavily damaged RC walls. The research outcome provided insights for developing guidelines for post-earthquake assessment of earthquake-damaged RC structures. The methodology used to conduct the investigation was through an experimental program divided into two phases. During the first phase, two walls were subjected to different types of pre-cyclic loading to represent the damaged condition from a prior earthquake, and a third wall represented a repair scenario with the damaged wall being repaired using epoxy injection and repair mortar after the pre-cyclic loading. Comparisons of these test walls to a control undamaged wall identified significant reductions in the stiffness of the damaged walls and a partial recovery in the wall stiffness achieved following epoxy injection. Visual damage that included distributed horizontal and diagonal cracks and spalling of the cover concrete did not affect the residual strength or displacement capacity of the walls. However, evidence of buckling of the longitudinal reinforcement during the pre-cyclic loading resulted in a slight reduction in strength recovery and a significant reduction in the displacement capacity of the damaged walls. Additional experimental programs from the literature were used to provide recommendations for modelling the response of moderately damaged RC walls and to identify a threshold that represented a potential reduction in the residual strength and displacement capacity of damaged RC walls in future earthquakes. The second phase of the experimental program conducted in this thesis addressed the replacement of concrete and reinforcing steel as repair techniques for heavily damaged RC walls. Two walls were repaired by replacing the damaged concrete and using welded connections to connect new reinforcing bars with existing bars. Different locations of the welded connections were investigated in the repaired walls to study the impact of these discontinuities at the critical section. No significant changes were observed in the stiffness, strength, and displacement capacity of the repaired walls compared to the benchmark undamaged wall. Differences in the local behaviour at the critical section were observed in one of the walls but did not impact the global response. The results of these two repaired walls were combined with other experimental programs found in the literature to assemble a database of repaired RC walls. Qualitative and quantitative analyses identified trends across various parameters, including wall types, damage before repair, and repair techniques implemented. The primary outcome of the database analysis was recommendations for concrete and reinforcing steel replacement to restore the strength and displacement capacity of heavily damaged RC walls.

Research papers, The University of Auckland Library

This paper analyses the city of Christchurch, New Zealand, which has been through dramatic changes since it was struck by a series of earthquakes of different intensities between 2010 and 2011. The objective is to develop a deeper understanding of resilience by looking at changes in green and grey infrastructures. The study can be helpful to reveal a way of doing comparative analysis using resilience as a theoretical framework. In this way, it might be possible to assess the blueprint of future master plans by considering how important the interplay between green and grey infrastructure is for the resilience capacity of cities.

Research papers, The University of Auckland Library

This paper shows an understanding of the availability of resources in post-disaster reconstruction and recovery in Christchurch, New Zealand following its September 4, 2010 and February 22, 2011 earthquakes. Overseas experience in recovery demonstrates how delays and additional costs may incur if the availability of resources is not aligned with the reconstruction needs. In the case of reconstruction following Christchurch earthquakes, access to normal resource levels will be insufficient. An on-line questionnaire survey, combined with in-depth interviews was used to collect data from the construction professionals that had been participated in the post-earthquake reconstruction. The study identified the resources that are subject to short supply and resourcing challenges that are currently faced by the construction industry. There was a varied degree of impacts felt by the surveyed organisations from resource shortages. Resource pressures were primarily concentrated on human resources associated with structural, architectural and land issues. The challenges that may continue playing out in the longer-term reconstruction of Christchurch include limited capacity of the construction industry, competition for skills among residential, infrastructure and commercial sectors, and uncertainties with respect to decision making. Findings provide implications informing the ongoing recovery and rebuild in New Zealand. http://www.iiirr.ucalgary.ca/Conference-2012

Research papers, The University of Auckland Library

During the Christchurch earthquake of February 2011, several midrise buildings of Reinforced Concrete Masonry (RCM) construction achieved performance levels in the range of life safety to near collapse levels. These buildings were subjected to seismic demands higher than the building code requirements of the time and higher than the current New Zealand Loadings Standard (NZS-1170.5:2004). Structural damage to these buildings has been documented and is currently being studied to establish lessons to be learned from their performance and how to incorporate these lessons into future RCM design and construction practices. This paper presents a case study of a six story RCM building deemed to have reached the near collapse performance level. The RCM walls on the 2nd floor failed due to toe crushing reducing the building’s lateral resistance in the east-west direction. A nonlinear dynamic analysis on a 3D model was conducted to simulate the development of the governing failure mechanism. Preliminary analysis results show that the damaged walls were initially under large compression forces from gravity loads which caused increase in their lateral strength and reduced their ductility. After toe crushing failure developed, axial instability of the model was prevented by a redistribution of gravity loads.

Research papers, The University of Auckland Library

The Manchester Courts building was a heritage building located in central Christchurch (New Zealand) that was damaged in the Mw 7.1 Darfield earthquake on 4 September 2010 and subsequently demolished as a risk reduction exercise. Because the building was heritage listed, the decision to demolish the building resulted in strong objections from heritage supporters who were of the opinion that the building had sufficient residual strength to survive possible aftershock earthquakes. On 22 February 2011 Christchurch was struck by a severe aftershock, leading to the question of whether building demolition had proven to be the correct risk reduction strategy. Finite element analysis was used to undertake a performance-based assessment, validating the accuracy of the model using the damage observed in the building before its collapse. In addition, soil-structure interaction was introduced into the research due to the comparatively low shear wave velocity of the soil. The demolition of a landmark heritage building was a tragedy that Christchurch will never recover from, but the decision was made considering safety, societal, economic and psychological aspects in order to protect the city and its citizens. The analytical results suggest that the Manchester Courts building would have collapsed during the 2011 Christchurch earthquake, and that the collapse of the building would have resulted in significant fatalities.

Research papers, The University of Auckland Library

Following the 22 February 2011 Christchurch earthquake a comprehensive damage survey of the unreinforced masonry (URM) building stock of Christchurch city, New Zealand was undertaken. Because of the large number of aftershocks associated with both the 2011 Christchurch earthquake and the earlier 4 September 2010 Darfield earthquake, and the close proximity of their epicentres to Christchurch city, this earthquake sequence presented a unique opportunity to assess the performance of URM buildings and the various strengthening methods used in New Zealand to increase the performance of these buildings in earthquakes. Because of the extent of data that was collected, a decision was made to initially focus exclusively on the earthquake performance of URM buildings located in the central business district (CBD) of Christchurch city. The main objectives of the data collection exercise were to document building characteristics and any seismic strengthening methods encountered, and correlate these attributes with observed earthquake damage. In total 370 URM buildings in the CBD were surveyed. Of the surveyed buildings, 62% of all URM buildings had received some form of earthquake strengthening and there was clear evidence that installed earthquake strengthening techniques in general had led to reduced damage levels. The procedure used to collect and process information associated with earthquake damage, general analysis and interpretation of the available survey data for the 370 URM buildings, the performance of earthquake strengthening techniques, and the influence of earthquake strengthening levels on observed damage are reported within. http://15ibmac.com/home/

Research papers, The University of Auckland Library

New Zealand’s stock of unreinforced masonry (URM) bearing wall buildings was principally constructed between 1880 and 1935, using fired clay bricks and lime or cement mortar. These buildings are particularly vulnerable to horizontal loadings such as those induced by seismic accelerations, due to a lack of tensile force-resisting elements in their construction. The poor seismic performance of URM buildings was recently demonstrated in the 2011 Christchurch earthquake, where a large number of URM buildings suffered irreparable damage and resulted in a significant number of fatalities and casualties. One of the predominant failure modes that occurs in URM buildings is diagonal shear cracking of masonry piers. This diagonal cracking is caused by earthquake loading orientated parallel to the wall surface and typically generates an “X” shaped crack pattern due to the reversed cyclic nature of earthquake accelerations. Engineered Cementitious Composite (ECC) is a class of fiber reinforced cement composite that exhibits a strain-hardening characteristic when loaded in tension. The tensile characteristics of ECC make it an ideal material for seismic strengthening of clay brick unreinforced masonry walls. Testing was conducted on 25 clay brick URM wallettes to investigate the increase in shear strength for a range of ECC thicknesses applied to the masonry wallettes as externally bonded shotcrete reinforcement. The results indicated that there is a diminishing return between thickness of the applied ECC overlay and the shear strength increase obtained. It was also shown that, the effectiveness of the externally bonded reinforcement remained constant for one and two leaf wallettes, but decreased rapidly for wall thicknesses greater than two leafs. The average pseudo-ductility of the strengthened wallettes was equal to 220% of that of the as-built wallettes, demonstrating that ECC shotcrete is effective at enhancing both the in-plane strength and the pseudo-ductility of URM wallettes. AM - Accepted Manuscript

Research papers, The University of Auckland Library

Having a quick but reliable insight into the likelihood of damage to bridges immediately after an earthquake is an important concern especially in the earthquake prone countries such as New Zealand for ensuring emergency transportation network operations. A set of primary indicators necessary to perform damage likelihood assessment are ground motion parameters such as peak ground acceleration (PGA) at each bridge site. Organizations, such as GNS in New Zealand, record these parameters using distributed arrays of sensors. The challenge is that those sensors are not installed at, or close to, bridge sites and so bridge site specific data are not readily available. This study proposes a method to predict ground motion parameters for each bridge site based on remote seismic array recordings. Because of the existing abundant source of data related to two recent strong earthquakes that occurred in 2010 and 2011 and their aftershocks, the city of Christchurch is considered to develop and examine the method. Artificial neural networks have been considered for this research. Accelerations recorded by the GeoNet seismic array were considered to develop a functional relationship enabling the prediction of PGAs. http://www.nzsee.org.nz/db/2013/Posters.htm

Research papers, The University of Auckland Library

The Christchurch earthquakes have highlighted the importance of low-damage structural systems for minimising the economic impacts caused by destructive earthquakes. Post-tensioned precast concrete walls have been shown to provide superior seismic resistance to conventional concrete construction by minimising structural damage and residual drifts through the use of a controlled rocking mechanism. The structural response of unbonded post-tensioned precast concrete wall systems, with and without additional energy dissipating elements, were investigated by means of pseudo-static cyclic, snap back and forced vibration testing with shake table testing to be completed. Two types of post-tensioned rocking wall system were investigated; a single unbonded post-tensioned precast concrete wall or Single Rocking Wall (SRW) and a system consisting of a Precast Wall with End Columns (PreWEC). The equivalent viscous damping (EVD) was evaluated using both the pseudo-static cyclic and snap back test data for all wall configurations. The PreWEC configurations showed an increase in EVD during the snap back tests in comparison to the cyclic test response. In contrast the SRW showed lower EVD during the snap back tests in comparison to the SRW cyclic test response. Despite residual drifts measured during the pseudo-static cyclic tests, negligible residual drift was measured following the snap back tests, highlighting the dynamic shake-down that occurs during the free vibration decay. Overall, the experimental tests provided definitive examples of the behaviour of posttensioned wall systems and validated their superior performance compared to reinforced concrete construction when subjected to large lateral drifts.

Research papers, University of Canterbury Library

The 2010-2011 Christchurch earthquakes generated damage in several Reinforced Concrete (RC) buildings, which had RC walls as the principal resistant element against earthquake demand. Despite the agreement between structural engineers and researchers in an overall successfully performance there was a lack of knowledge about the behaviour of the damaged structures, and even deeper about a repaired structure, which triggers arguments between different parties that remains up to these days. Then, it is necessary to understand the capacity of the buildings after the earthquake and see how simple repairs techniques improve the building performance. This study will assess the residual capacity of ductile slender RC walls according to current standards in New Zealand, NZS 3101.1 2006 A3. First, a Repaired RC walls Database is created trying to gather previous studies and to evaluate them with existing international guidelines. Then, an archetype building is designed, and the wall is extracted and scaled. Four half-scale walls were designed and will be constructed and tested at the Structures Testing Laboratory at The University of Auckland. The overall dimensions are 3 [m] height, 2 [m] length and 0.175 [m] thick. All four walls will be identical, with differences in the loading protocol and the presence or absence of a repair technique. Results are going to be useful to assess the residual capacity of a damaged wall compare to the original behaviour and also the repaired capacity of walls with simpler repair techniques. The expected behaviour is focussed on big changes in stiffness, more evident than in previously tested RC beams found in the literature.

Research papers, The University of Auckland Library

Eccentrically Braced Frames (EBFs) are a widely used seismic resisting structural steel system. Since their inception in the late 1970s, they have been a viable option with an available stiffness that is between simple braced systems and moment resisting systems. A similar concept, the linked column frame (LCF), uses shear links between two closely spaced columns. In both cases, the key component is the active link or the shear link, and this component is the objective of this study. The performance of high rise EBF buildings in the 2010 and 2011 Christchurch earthquakes was beyond that which was expected, especially considering the very high accelerations recorded. As the concrete high-rises were torn down, two EBF buildings remained standing and only required some structural repair. These events prompted a renewed interest in bolted shear links, as well as their performance. While some research into replaceable shear links had already been done (Mansour, 2011), the objectives of this study were to improve on the shear link itself, with the consideration that links built in the future are likely to be bolted. The main components of this study were to: 1. Reduce or eliminate the requirements for intermediate web stiffeners, as they were suspected of being detrimental to performance. Furthermore, any reduction in stiffening requirements is a direct fabrication cost saving. Links with low web aspect ratios were found to achieve exceptional ductilities when no stiffeners were included, prompting new design equations. 2. Ensure that the stresses in the ends of links are adequately transferred into the endplates without causing fractures. Although most of the experimental links had web doubler plates included, four had varied lengths of such doubler plates from 0.0 in. to 8.0 in. The link without any doubler plates performed to a similar level to its peers, and thus it is likely that links with quality end details may not need web doubler plates at all. 3. Evaluate the performance of a link with double sided stiffeners without the use of web welds, as opposed to conventional single sided, welded stiffeners. This link performed well, and web-weld-less double sided stiffeners may be an economical alternative to conventional stiffeners for deeper sections of links. 4. Evaluate the performance of a link with thin endplates that are made efficient with the use of gusset plates. This link performed to an acceptable level and provides evidence for a cost effective alternative to thick endplates, especially considering the high overstrength end moments in links, typically requiring 16-bolt connections. 5. Examine the potential use of an alternative EBF arrangement where the collector beam is over sized, and the link section is formed by cutting out parts of the beam's web. After running a series of finite element models each with a unique variation, a number of approximate design rules were derived such that future research could develop this idea further experimentally. 6. Ensure that during testing, the secondary elements (members that are not the shear link), do not yield and are not close to yielding. None of the instrumented elements experienced any unexpected yielding, however the concerns for high stresses in the collector beam panel zone during design were warranted. The use of an existing New Zealand design equation is recommended as an extra check for design codes worldwide. The above objectives were mainly conducted experimentally, except: the data set for item 1 was greatly expanded through the use of a calibrated numerical model which was then used in an extensive parametric study; item 5 was purely finite element based; and, a small parametric study was included for item 3 in an attempt to expand on the trends found there.

Research papers, The University of Auckland Library

The recent instances of seismic activity in Canterbury (2010/11) and Kaikōura (2016) in New Zealand have exposed an unexpected level of damage to non-structural components, such as buried pipelines and building envelope systems. The cost of broken buried infrastructure, such as pipeline systems, to the Christchurch Council was excessive, as was the cost of repairing building envelopes to building owners in both Christchurch and Wellington (due to the Kaikōura earthquake), which indicates there are problems with compliance pathways for both of these systems. Councils rely on product testing and robust engineering design practices to provide compliance certification on the suitability of product systems, while asset and building owners rely on the compliance as proof of an acceptable design. In addition, forensic engineers and lifeline analysts rely on the same product testing and design techniques to analyse earthquake-related failures or predict future outcomes pre-earthquake, respectively. The aim of this research was to record the actual field-observed damage from the Canterbury and Kaikōura earthquakes of seismic damage to buried pipeline and building envelope systems, develop suitable testing protocols to be able to test the systems’ seismic resilience, and produce prediction design tools that deliver results that reflect the collected field observations with better accuracy than the present tools used by forensic engineers and lifeline analysts. The main research chapters of this thesis comprise of four publications that describe the gathering of seismic damage to pipes (Publication 1 of 4) and building envelopes (Publication 2 of 4). Experimental testing and the development of prediction design tools for both systems are described in Publications 3 and 4. The field observation (discussed in Publication 1 of 4) revealed that segmented pipe joints, such as those used in thick-walled PVC pipes, were particularly unsatisfactory with respect to the joint’s seismic resilience capabilities. Once the joint was damaged, silt and other deleterious material were able to penetrate the pipeline, causing blockages and the shutdown of key infrastructure services. At present, the governing Standards for PVC pipes are AS/NZS 1477 (pressure systems) and AS/NZS 1260 (gravity systems), which do not include a protocol for evaluating the PVC pipes for joint seismic resilience. Testing methodologies were designed to test a PVC pipe joint under various different simultaneously applied axial and transverse loads (discussed in Publication 3 of 4). The goal of the laboratory experiment was to establish an easy to apply testing protocol that could fill the void in the mentioned standards and produce boundary data that could be used to develop a design tool that could predict the observed failures given site-specific conditions surrounding the pipe. A tremendous amount of building envelope glazing system damage was recorded in the CBDs of both Christchurch and Wellington, which included gasket dislodgement, cracked glazing, and dislodged glazing. The observational research (Publication 2 of 4) concluded that the glazing systems were a good indication of building envelope damage as the glazing had consistent breaking characteristics, like a ballistic fuse used in forensic blast analysis. The compliance testing protocol recognised in the New Zealand Building Code, Verification Method E2/VM1, relies on the testing method from the Standard AS/NZS 4284 and stipulates the inclusion of typical penetrations, such as glazing systems, to be included in the test specimen. Some of the building envelope systems that failed in the recent New Zealand earthquakes were assessed with glazing systems using either the AS/NZS 4284 or E2/VM1 methods and still failed unexpectedly, which suggests that improvements to the testing protocols are required. An experiment was designed to mimic the observed earthquake damage using bi-directional loading (discussed in Publication 4 of 4) and to identify improvements to the current testing protocol. In a similar way to pipes, the observational and test data was then used to develop a design prediction tool. For both pipes (Publication 3 of 4) and glazing systems (Publication 4 of 4), experimentation suggests that modifying the existing testing Standards would yield more realistic earthquake damage results. The research indicates that including a specific joint testing regime for pipes and positioning the glazing system in a specific location in the specimen would improve the relevant Standards with respect to seismic resilience of these systems. Improving seismic resilience in pipe joints and glazing systems would improve existing Council compliance pathways, which would potentially reduce the liability of damage claims against the government after an earthquake event. The developed design prediction tool, for both pipe and glazing systems, uses local data specific to the system being scrutinised, such as local geology, dimensional characteristics of the system, actual or predicted peak ground accelerations (both vertically and horizontally) and results of product-specific bi-directional testing. The design prediction tools would improve the accuracy of existing techniques used by forensic engineers examining the cause of failure after an earthquake and for lifeline analysts examining predictive earthquake damage scenarios.

Research papers, The University of Auckland Library

The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for adhesive anchor connections than for through-bolt connections (i.e. anchorages having plates on the exterior façade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation and the use of metal mesh sleeve. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5o to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes, a snapshot of the performed experimental program and the test results and a preliminary proposed pull-out capacity of adhesive anchors are presented herein. http://www.confer.co.nz/nzsee/ VoR - Version of Record

Research papers, The University of Auckland Library

This thesis describes the strategies for earthquake strengthening vintage clay bricks unreinforced masonry (URM) buildings. URM buildings are well known to be vulnerable to damage from earthquake-induced lateral forces that may result in partial or full building collapse. The 2010/2011 Canterbury earthquakes are the most recent destructive natural disaster that resulted in the deaths of 185 people. The earthquake events had drawn people’s attention when URM failure and collapse caused about 39 of the fatality. Despite the poor performance of URM buildings during the 2010/2011 Canterbury earthquakes, a number of successful case study buildings were identified and their details research in-depth. In order to discover the successful seismic retrofitting techniques, two case studies of retrofitted historical buildings located in Christchurch, New Zealand i.e. Orion’s URM substations and an iconic Heritage Hotel (aka Old Government Building) was conducted by investigating and evaluating the earthquake performance of the seismic retrofitting technique applied on the buildings prior to the 2010/2011 Canterbury earthquakes and their performance after the earthquakes sequence. The second part of the research reported in this thesis was directed with the primary aim of developing a cost-effective seismic retrofitting technique with minimal interference to the vintage clay-bricks URM buildings. Two retrofitting techniques, (i) near-surface mounted steel wire rope (NSM-SWR) with further investigation on URM wallettes to get deeper understanding the URM in-plane behaviour, and (ii) FRP anchor are reported in this research thesis.

Research papers, The University of Auckland Library

Many large-scale earthquakes all over the world have highlighted the impact of soil liquefaction to the built environment, but the scale of liquefaction-induced damage experienced in Christchurch and surrounding areas following the 2010-2011 Canterbury earthquake sequence (CES) was unparalleled, especially in terms of impact to an urban area. The short time interval between the large earthquakes presented a very rare occasion to examine liquefaction mechanism in natural deposits. The re-liquefaction experienced by the city highlighted the high liquefaction susceptibility of soil deposits in Christchurch, and presented a very challenging problem not only to the local residents but to the geotechnical engineering profession. This paper summarises the lessons learned from CES, and the impacts of the observations made to the current practice of liquefaction assessment and mitigation.

Research papers, The University of Auckland Library

The Canterbury earthquake series of 2010/2011 has turned the city of Christchurch into a full scale natural laboratory testing the structural and non-structural response of buildings under moderate to very severe earthquake shaking. The lessons learned from this, which have come at great cost socially and economically, are extremely valuable in increasing our understanding of whole building performance in severe earthquakes. Given current initiatives underway on both sides of the Tasman towards developing joint Australasian steel and composite steel/concrete design and construction standards that would span a very wide range of geological conditions and seismic zones, these lessons are relevant to both countries. This paper focusses on the performance of steel framed buildings in Christchurch city, with greatest emphasis on multi-storey buildings, but also covering single storey steel framed buildings and light steel framed housing. It addresses such issues as the magnitude and structural impact of the earthquake series, importance of good detailing, lack of observed column base hinging, the excellent performance of composite floors and it will briefly cover research underway to quantify some of these effects for use in design.

Research papers, University of Canterbury Library

This is a joint Resilience Framework undertaken by the Electrical, Computer and Software Engineering Department of the University of Auckland in association with West Power and Orion networks and partially funded by the New Zealand National Science Challenge and QuakeCoRE. The Energy- Communication research group nearly accomplished two different researches focusing on both asset resilience and system resilience. Asset resilience research which covers underground cables system in Christchurch region is entitled “2010-2011 Canterbury Earthquake Sequence Impact on 11KV Underground Cables” and system resilience research which covers electricity distribution and communication system in West Coast region is entitled “NZ Electricity Distribution Network Resilience Assessment and Restoration Models following Major Natural Disturbance“. As the fourth milestone of the aforementioned research project, the latest outcome of both projects has been socialised with the stakeholders during the Cigre NZ 2019 Forum.

Research papers, The University of Auckland Library

This thesis is a creative and critical exploration of how transmedia storytelling meshes with political documentary’s nature of representing social realities and goals to educate and promote social change. I explore this notion through Obrero (“worker”), my independently produced transmedia and transjournalistic documentary project that explores the conditions and context of the Filipino rebuild workers who migrated to Christchurch, New Zealand after the earthquake in 2011. While the project should appeal to New Zealanders, it is specifically targeted at an audience from the Philippines. Obrero began as a film festival documentary that co-exists with strategically refashioned Web 2.0 variants, a social network documentary and an interactive documentary (i-doc). Using data derived from the production and circulation of Obrero, I interrogate how the documentary’s variants engage with differing audiences and assess the extent to which this engagement might be effective. This thesis argues that contemporary documentary needs to re-negotiate established film aesthetics and practices to adapt in the current period of shifting technologies and fragmented audiences. Documentary’s migration to new media platforms also creates a demand for filmmakers to work with a transmedia state of mind—that is, the capacity to practise the old canons of documentary making while comfortably adjusting to new media production praxis, ethics, and aesthetics. Then Obrero itself, as the creative component of this thesis, becomes an instance of research through creative practice. It does so in two respects: adding new knowledge about the context, politics, and experiences of the Filipino workers in New Zealand; and offering up a broader model for documentary engagement, which I analyse for its efficacy in the digital age.

Research papers, The University of Auckland Library

Disasters, either man-made or natural, are characterised by a multiplicity of factors including loss of property, life, environmental degradation, and psychosocial malfunction of the affected community. Although much research has been undertaken on proactive disaster management to help reduce the impacts of natural and man-made disasters, many challenges still remain. In particular, the desire to re-house the affected as quickly as possible can affect long-term recovery if a considered approach is not adopted. Promoting recovery activities, coordination, and information sharing at national and international levels are crucial to avoid duplication. Mannakkara and Wilkinson’s (2014) modified “Build Back Better” (BBB) concept aims for better resilience by incorporating key resilience elements in post-disaster restoration. This research conducted an investigation into the effectiveness of BBB in the recovery process after the 2010–2011 earthquakes in greater Christchurch, New Zealand. The BBB’s impact was assessed in terms of its five key components: built environment, natural environment, social environment, economic environment, and implementation process. This research identified how the modified BBB propositions can assist in disaster risk reduction in the future, and used both qualitative and quantitative data from both the Christchurch and Waimakariri recovery processes. Semi-structured interviews were conducted with key officials from the Christchurch Earthquake Recovery Authority, and city councils, and supplemented by reviewing of the relevant literature. Collecting data from both qualitative and quantitative sources enabled triangulation of the data. The interviewees had directly participated in all phases of the recovery, which helped the researcher gain a clear understanding of the recovery process. The findings led to the identification of best practices from the Christchurch and Waimakariri recovery processes and underlined the effectiveness of the BBB approach for all recovery efforts. This study contributed an assessment tool to aid the measurement of resilience achieved through BBB indicators. This tool provides systematic and structured approach to measure the performance of ongoing recovery.

Research papers, The University of Auckland Library

The seismic tremor that shook Christchurch on February 22, 2011, not only shattered buildings but also the spirit of the city’s residents. Amidst the ruins, this design-focused thesis unravels two intertwining narratives, each essential to the city’s resurrection. At its core, this thesis probes the preservation of Christchurch’s memory and character, meticulously chronicling the lost heritage architecture and the subsequent urban metamorphosis. Beyond bricks and mortar, it also confronts the silent aftershocks - the pervasive mental health challenges stemming from personal losses and the disfigured cityscape. As a native of Christchurch, intimately connected to its fabric, my lens reflects not just on the architectural reconstruction but also on the emotional reconstruction. My experience as an autistic individual, a recently discovered facet of my identity, infuses this design journey with a distinct prism through which I perceive and interact with the world. The colourful sketches that drive the design process aren’t mere illustrations but manifestations of my interpretation of spaces and concepts, evoking joy and vitality—a testament to embracing diversity in design. Drawing parallels between healing my own traumas with my colourful and joyful neurodivergent worldview, I’ve woven this concept into proposals aimed at healing the city through whimsy, joy, and vibrant colours. Personal experiences during and post-earthquakes profoundly shape my design proposals. Having navigated the labyrinth of my own mental health amid the altered cityscape, I seek avenues for reconciliation, both personal and communal. The vibrant sketches and designs presented in this thesis encapsulate this vision—a fusion of vivid, unconventional interpretations and a dedication to preserving the essence of the original cityscape while still encouraging movement into the future.

Research papers, The University of Auckland Library

The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for the case of adhesive anchor connections than for the case of through-bolt connections (i.e. anchorages having plates on the exterior façade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation and the use of metal foil sleeve. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5o to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes and a snapshot of the performed experimental program and the test results are presented herein. http://hdl.handle.net/2292/21050

Research papers, The University of Auckland Library

This thesis presents the application of data science techniques, especially machine learning, for the development of seismic damage and loss prediction models for residential buildings. Current post-earthquake building damage evaluation forms are developed for a particular country in mind. The lack of consistency hinders the comparison of building damage between different regions. A new paper form has been developed to address the need for a global universal methodology for post-earthquake building damage assessment. The form was successfully trialled in the street ‘La Morena’ in Mexico City following the 2017 Puebla earthquake. Aside from developing a framework for better input data for performance based earthquake engineering, this project also extended current techniques to derive insights from post-earthquake observations. Machine learning (ML) was applied to seismic damage data of residential buildings in Mexico City following the 2017 Puebla earthquake and in Christchurch following the 2010-2011 Canterbury earthquake sequence (CES). The experience showcased that it is readily possible to develop empirical data only driven models that can successfully identify key damage drivers and hidden underlying correlations without prior engineering knowledge. With adequate maintenance, such models have the potential to be rapidly and easily updated to allow improved damage and loss prediction accuracy and greater ability for models to be generalised. For ML models developed for the key events of the CES, the model trained using data from the 22 February 2011 event generalised the best for loss prediction. This is thought to be because of the large number of instances available for this event and the relatively limited class imbalance between the categories of the target attribute. For the CES, ML highlighted the importance of peak ground acceleration (PGA), building age, building size, liquefaction occurrence, and soil conditions as main factors which affected the losses in residential buildings in Christchurch. ML also highlighted the influence of liquefaction on the buildings losses related to the 22 February 2011 event. Further to the ML model development, the application of post-hoc methodologies was shown to be an effective way to derive insights for ML algorithms that are not intrinsically interpretable. Overall, these provide a basis for the development of ‘greybox’ ML models.

Research papers, The University of Auckland Library

While societal messages can encourage an unhealthy strive for perfection, the notion of embracing individual flaws and openly displaying vulnerabilities can appear foreign and outlandish. However, when fallibility is acknowledged and imperfection embraced, intimate relationships built on foundations of acceptance, trust and understanding can be established. In an architectural context, similar deep-rooted connections can be formed between a people and a place through the retention of layers of historical identity. When a building is allowed to age with blemishes laid bare for all to see, an architectural work can exhibit a sense of 'humanising vulnerability' where the bruises and scars it bears are able to visually communicate its contextual narrative. This thesis explores the notion of designing to capitalise on past decay through revitalisation of the former Wood Brothers Flour Mill in Addington, Christchurch (1891). Known as one of the city's last great industrial buildings, the 130-year-old structure remains hugely impressive due to its sheer size and scale despite being abandoned and subject to vandalism for a number of years. Its condition of obsolescence ensured the retention of visible signs of wear and tear in addition to the extensive damage caused by the 2010-12 Canterbury earthquakes. In offering a challenge to renovation and reconstruction as a means of conservation, this thesis asks if 'doing less' has the potential to 'do more'. How can an understanding of architecture as an ongoing process inform a design approach to celebrate ageing and patina? While the complex is undergoing redevelopment at the time of writing, the design project embraces the condition of the historic buildings in the immediate aftermath of the earthquakes and builds upon the patina of the mill and adjacent flour and grain store in developing a design for their adaptation as a micro-distillery. Research into the traditional Japanese ideology of wabi-sabi and its practical applications form the basis for a regenerative design approach which finds value in imperfection, impermanence and incompleteness. The thesis combines a literature review, precedent review and site analysis together with a design proposal. This thesis shows that adaptive reuse projects can benefit from an active collaboration with the processes of decay. Instead of a mindset where an architectural work is considered the finished article upon completion of construction, an empathetic and sensitive design philosophy is employed in which careful thought is given to the continued preservation and evolution of a structure with the recognition that evidence of past wear, tear, patina and weathering can all contribute positively to a building's future. In this fashion, rather than simply remaining as relics of the past, buildings can allow the landscape of their urban context to shape and mould them to ensure that their architectural experience can continue to be enjoyed by generations to come.

Research papers, The University of Auckland Library

The skills agenda has grown in prominence within the construction industry. Indeed, skill shortages have been recognised as a perennial problem the construction industry faces, especially after a major disaster. In the aftermath of the Christchurch earthquakes, small and medium construction companies were at the forefront of rebuilding efforts. While the survival of these companies was seen to be paramount, and extreme events were seen to be a threat to survival, there is a dearth of research centring on their resourcing capacity following a disaster. This research aims to develop workforce resourcing best practice guidelines for subcontractors in response to large disaster reconstruction demands. By using case study methods, this research identified the challenges faced by subcontracting businesses in resourcing Christchurch recovery projects; identified the workforce resourcing strategies adopted by subcontracting businesses in response to reconstruction demand; and developed a best practice guideline for subcontracting businesses in managing the workforce at the organisational and/or project level. This research offers a twofold contribution. First, it provides an overview of workforce resourcing practices in subcontracting businesses. This understanding has enabled the development of a more practical workforce resourcing guideline for subcontractors. Second, it promotes evidence-informed decision-making in subcontractors’ workforce resourcing. Dynamics in workforce resourcing and their multifaceted interactions were explicitly depicted in this research. More importantly, this research provides a framework to guide policy development in producing a sustainable solution to skill shortages and establishing longterm national skill development initiatives. Taken together, this research derives a research agenda that maps under-explored areas relevant for further elaboration and future research. Prospective researchers can use the research results in identifying gaps and priority areas in relation to workforce resourcing.

Research papers, The University of Auckland Library

This thesis revisits the topic of earthquake recovery in Christchurch City more than a decade after the Canterbury earthquakes. Despite promising visions of a community reconnected and a sustainable and liveable city, significant portions of the city’s core – the Red Zone – remain dilapidated and “eerily empty”. At the same time, new developments in other areas have proven to be alienated or underutilised. Currently, the Canterbury Earthquake Recovery Authority’s plans for the rebuilding highlight the delivery of more residential housing to re-populate the city centre. However, prevalent approaches to housing development in Christchurch are ineffective for building an inclusive and active community. Hence, the central inquiry of the thesis is how the development of housing complexes can revitalise the Red Zone within the Christchurch city centre. The inquiry has been carried out through a research-through-design methodology, recognising the importance of an in-depth investigation that is contextualised and combined with the intuition and embodied knowledge of the designer. The investigation focuses on a neglected site in the Red Zone in the heart of Christchurch city, with significant Victorian and Edwardian Baroque heritage buildings, including Odeon Theatre, Lawrie & Wilson Auctioneers, and Sol Square, owned by The Regional Council Environment Canterbury. The design inquiry argues, develops, and is carried through a place-assemblage lens to housing development for city recovery, which recognizes the significance of socially responsive architecture that explores urban renewal by forging connections within the social network. Therefore, place-assemblage criteria and methods for developing socially active and meaningful housing developments are identified. Firstly, this thesis argues that co-living housing models are more focused on people relations and collective identity than the dominant developer-driven housing rebuilds, as they prioritise conduits for interaction and shared social meaning and practices. Secondly, the adaptive reuse of derelict heritage structures is proposed to reinvigorate the urban fabric, as heritage is seen to be conceived as and from a social assemblage of people. The design is realised by the principles outlined in the ICOMOS charter, which involves incorporating the material histories of existing structures and preserving the intangible heritage of the site by ensuring the continuity of cultural practices. Lastly, design processes and methods are also vital for place-sensitive results, which pay attention to the site’s unique characteristics to engage with local stakeholders and communities. The research explores place-assemblage methods of photographic extraction, the drawing of story maps, precedent studies, assemblage maps, bricolages, and paper models, which show an assembly of layers that piece together the existing heritage, social conduits, urban commons and housing to conceptualise the social network within its place.

Research papers, The University of Auckland Library

A non-destructive hardness testing method has been developed to investigate the amount of plastic strain demand in steel elements subjected to cyclic loading. The focus of this research is on application to the active links of eccentrically braced frames (EBFs), which are a commonly used seismic-resisting system in modern steel framed buildings. The 2010/2011 Christchurch earthquake series, especially the very intense February 22 shaking, which was the first earthquake worldwide to push complete EBF systems fully into their inelastic state, generating a moderate to high level of plastic strain in EBF active links, for a range of buildings from 3 to 23 storeys in height. This raised two important questions: 1) what was the extent of plastic deformation in active links; and 2) what effect does that have to post-earthquake steel properties? This project comprised determining a robust relationship between hardness and plastic strain in order to be able to answer the first question and provide the necessary input into answering the second question. A non-destructive Leeb (portable) hardness tester (model TH170) has been used to measure the hardness, in order to determine the plastic strain, in hot rolled steel universal sections and steel plates. A bench top Rockwell B was used to compare and validated the hardness measured by the portable hardness tester. Hardness was measured from monotonically strained tensile test specimens to identify the relationship between hardness and plastic strain demand. Test results confirmed a good relationship between hardness and the amount of monotonically induced plastic strain. Surface roughness was identified as an important parameter in obtaining reliable hardness readings from a portable hardness reader. A proper surface preparation method was established by using three different cleaning methods, finished with hand sanding to achieve surface roughness coefficients sufficiently low not to distort the results. This work showed that a test surface roughness (Ra) is not more than 1.6 micron meter (μm) is required for accurate readings from the TH170 tester. A case study on an earthquake affected building was carried out to identify the relationship between hardness and amount of plastic strain demand in cyclically deformed active links. Hardness was carried out from active links shown visually to have been the most affected during one of the major earthquake events. Onsite hardness test results were then compared with laboratory hardness test results. A good relationship between hardness from onsite and laboratory was observed between the test methods; Rockwell B bench top and portable Leeb tester TH170. Manufacturing induced plastic strain in the top and bottom of the webs of hot rolled sections were discovered from this research, an important result which explains why visual effects of earthquake induced active link yielding (eg cracked or flaking paint) was typically more prevalent over the middle half depth of the active link. The extent of this was quantified. It was also evident that the hardness readings from the portable hardness tester are influenced by geometry, mass effects and rigidity of the links. The final experimental stage was application of the method to full scale cyclic inelastic tested nominally identical active links subjected to loading regimes comprising constant and variable plastic strain demands. The links were cyclically loaded to achieve different plastic strain level. A novel Digital Image Correlation (DIC) technique was incorporated during the tests of this scale, to confirm the level of plastic strain achieved. Tensile test specimens were water jet cut from cyclically deformed webs to analyse the level of plastic strain. Test results show clear evidence that cyclically deformed structural steel elements show good correlation between hardness and the amount of plastic strain demand. DIC method was found to be reliable and accurate to check the level of plastic strain within cyclically deformed structural steel elements.

Research papers, The University of Auckland Library

As damage and loss caused by natural hazards have increased worldwide over the past several decades, it is important for governments and aid agencies to have tools that enable effective post-disaster livelihood recovery to create self-sufficiency for the affected population. This study introduces a framework of critical components that constitute livelihood recovery and the critical factors that lead to people’s livelihood recovery. A comparative case study is employed in this research, combined with questionnaire surveys and interviews with those communities affected by large earthquakes in Lushan, China and in Christchurch and Kaikōura, New Zealand. In Lushan, China, a framework with four livelihood components was established, namely, housing, employment, wellbeing and external assistance. Respondents considered recovery of their housing to be the most essential element for livelihood diversification. External assistance was also rated highly in assisting with their livelihood recovery. Family ties and social connections seemed to have played a larger role than that of government agencies and NGOs. However, the recovery of livelihood cannot be fully achieved without wellbeing aspects being taken into account, and people believed that quality of life and their physical and mental health were essential for livelihood restoration. In Christchurch, New Zealand, the identified livelihood components were validated through in-depth interviews. The results showed that the above framework presenting what constitutes successful livelihood recovery could also be applied in Christchurch. This study also identified the critical factors to affect livelihood recovery following the Lushan and Kaikōura earthquakes, and these include community safety, availability of family support, level of community cohesion, long-term livelihood support, external housing recovery support, level of housing recovery and availability of health and wellbeing support. The framework developed will provide guidance for policy makers and aid agencies to prioritise their strategies and initiatives in assisting people to reinstate their livelihood in a timely manner post-disaster. It will also assist the policy makers and practitioners in China and New Zealand by setting an agenda for preparing for livelihood recovery in non-urgent times so the economic impact and livelihood disruption of those affected can be effectively mitigated.

Research papers, The University of Auckland Library

The Screw Driving Sounding (SDS) method developed in Japan is a relatively new insitu testing technique to characterise soft shallow sites, typically those required for residential house construction. An SDS machine drills a rod into the ground in several loading steps while the rod is continuously rotated. Several parameters, such as torque, load and speed of penetration, are recorded at every rotation of the rod. The SDS method has been introduced in New Zealand, and the results of its application for characterising local sites are discussed in this study. A total of 164 SDS tests were conducted in Christchurch, Wellington and Auckland to validate/adjust the methodologies originally developed based on the Japanese practice. Most of the tests were conducted at sites where cone penetration tests (CPT), standard penetration tests (SPT) and borehole logs were available; the comparison of SDS results with existing information showed that the SDS method has great potential as an in-situ testing method for classifying the soils. By compiling the SDS data from 3 different cities and comparing them with the borehole logs, a soil classification chart was generated for identifying the soil type based on SDS parameters. Also, a correlation between fines content and SDS parameters was developed and a procedure for estimating angle of internal friction of sand using SDS parameters was investigated. Furthermore, a correlation was made between the tip resistance of the CPT and the SDS data for different percentages of fines content. The relationship between the SPT N value and a SDS parameter was also proposed. This thesis also presents a methodology for identifying the liquefiable layers of soil using SDS data. SDS tests were performed in both liquefied and non-liquefied areas in Christchurch to find a representative parameter and relationship for predicting the liquefaction potential of soil. Plots were drawn of the cyclic shear stress ratios (CSR) induced by the earthquakes and the corresponding energy of penetration during SDS tests. By identifying liquefied or unliquefied layers using three different popular CPT-based methods, boundary lines corresponding to the various probabilities of liquefaction happening were developed for different ranges of fines contents using logistic regression analysis, these could then be used for estimating the liquefaction potential of soil directly from the SDS data. Finally, the drilling process involved in screw driving sounding was simulated using Abaqus software. Analysis results proved that the model successfully captured the drilling process of the SDS machine in sand. In addition, a chart to predict peak friction angles of sandy sites based on measured SDS parameters for various vertical effective stresses was formulated. As a simple, fast and economical test, the SDS method can be a reliable alternative insitu test for soil and site characterisation, especially for residential house construction.

Research papers, The University of Auckland Library

During many years the analysis of some geophysical results of Charles Darwin was being carried out in Department. Darwin has connected almost 200 years ago results of catastrophic earthquakes with vertical movement of a surface of the Earth. Usually this movement less horizontal movement and its influence on destruction of cities is not considered. Earthquake hazard assessment studies were focused usually on the horizontal ground motion. Effects of the strong vertical motion were not, practically, discussed. The margins of safety against gravity-induced static vertical forces in constructed buildings usually provide adequate resistance to dynamic forces induced by the vertical acceleration during an earthquake. However, the earthquake in Christchurch is an example of the vertical seismic shock . The earthquake magnitude was rather small - nearby 6.3. However, the result was catastrophic. The same took place in 1835. It allowed to Darwin to formulate a few great ideas. Charles Darwin has explained qualitatively results of an interaction of huge seismic waves with volcanoes and the nature of volcanism and seismicity of our planet. These important data of Charles Darwin became very actual recently. It is possible to tell also the same about tsunami and extreme ocean waves described by Charles Darwin. Therefore this data were analyzed using modern mechanics, mathematics and physics in Department. In particular, the theory of catastrophic waves was developed based on Darwin's data. The theory tried to explain occurrence, evolution and distribution the catastrophic waves in various natural systems, since atoms, oceans, surfaces of the Earth and up to the very early Universe. Some results of the research were published in prestigious magazines. Later they were presented in two books devoted to Charles Darwin's anniversary (2009). Last from them was published in Russian (2011). We give here key ideas of this research which is a part of interdisciplinary researches of Department. Some ideas are discussed. Not less important purpose is very short historical review of some researches of Darwin. In particular, we underline Darwin' priority in the formulation of the bases of Dynamics Earth.

Research papers, The University of Auckland Library

The research presented in this thesis investigated the environmental impacts of structural design decisions across the life of buildings located in seismic regions. In particular, the impacts of expected earthquake damage were incorporated into a traditional life cycle assessment (LCA) using a probabilistic method, and links between sustainable and resilient design were established for a range of case-study buildings designed for different seismic performance objectives. These links were quantified using a metric herein referred to as the seismic carbon risk, which represents the expected environmental impacts and resource use indicators associated with earthquake damage during buildings’ life. The research was broken into three distinct parts: (1) a city-level evaluation of the environmental impacts of demolitions following the 2010/2011 Canterbury earthquake sequence in New Zealand, (2) the development of a probabilistic framework to incorporate earthquake damage into LCA, and (3) using case-study buildings to establish links between sustainable and resilient design. The first phase of the research focused on the environmental impacts of demolitions in Christchurch, New Zealand following the 2010/2011 Canterbury Earthquake Sequence. This large case study was used to investigate the environmental impact of the demolition of concrete buildings considering the embodied carbon and waste stream distribution. The embodied carbon was considered here as kilograms of CO2 equivalent that occurs on production, construction, and waste management stage. The results clearly demonstrated the significant environmental impacts that can result from moderate and large earthquakes in urban areas, and the importance of including environmental considerations when making post-earthquake demolition decisions. The next phase of the work introduced a framework for incorporating the impacts of expected earthquake damage based on a probabilistic approach into traditional LCA to allow for a comparison of seismic design decisions using a carbon lens. Here, in addition to initial construction impacts, the seismic carbon risk was quantified, including the impacts of seismic repair activities and total loss scenarios assuming reconstruction in case of non-reparability. A process-based LCA was performed to obtain the environmental consequence functions associated with structural and non-structural repair activities for multiple environmental indicators. In the final phase of the work, multiple case-study buildings were used to investigate the seismic consequences of different structural design decisions for buildings in seismic regions. Here, two case-study buildings were designed to multiple performance objectives, and the upfront carbon costs, and well as the seismic carbon risk across the building life were compared. The buildings were evaluated using the framework established in phase 2, and the results demonstrated that the seismic carbon risk can significantly be reduced with only minimal changes to the upfront carbon for buildings designed for a higher base shear or with seismic protective systems. This provided valuable insight into the links between resilient and sustainable design decisions. Finally, the results and observations from the work across the three phases of research described above were used to inform a discussion on important assumptions and topics that need to be considered when quantifying the environmental impacts of earthquake damage on buildings. These include: selection of a non-repairable threshold (e.g. a value beyond which a building would be demolished rather than repaired), the time value of carbon (e.g. when in the building life the carbon is released), the changing carbon intensity of structural materials over time, and the consideration of deterministic vs. probabilistic results. Each of these topics was explored in some detail to provide a clear pathway for future work in this area.