Len Pettet, a resident from one of Christchurch's eastern suburbs, going over paperwork with a member of the New Zealand Army. Len Pettet is receiving a chemical toilet. His suburb has been without water and power for over ten days.
Murray Lind, a resident from one of Christchurch's eastern suburbs, going over paperwork with a member of the New Zealand Army. Murray Lind is receiving a chemical toilet. His suburb has been without water and power for over ten days.
Bob Sehumacher, a resident from one of Christchurch's eastern suburbs, going over paperwork with a member of the New Zealand Army. Bob Sehumacher is receiving a chemical toilet. His suburb has been without water and power for over ten days.
Bob Sehumacher, a resident from one of Christchurch's eastern suburbs, going over paperwork with a member of the New Zealand Army. Bob Sehumacher is receiving a chemical toilet. His suburb has been without water and power for over ten days.
Hazel Hampton, a resident from one of Christchurch's eastern suburbs, filling out paperwork for a member of the New Zealand Army. Hazel Hampton is receiving a chemical toilet. Her suburb has been without water and power for over ten days.
Len Pettet, a resident from one of Christchurch's eastern suburbs, going over paperwork with a member of the New Zealand Army. Len Pettet is receiving a chemical toilet. His suburb has been without water and power for over ten days.
The northern side of the Christ Church Cathedral with the cafe and store in the foreground. Shipping containers have been placed around the eastern side of the Cathedral to protect the road from falling debris. Wire fencing has also been placed around the building as a cordon. To the right, the damaged and party deconstructed tower can be seen with the missing spire which fell during the 22 February 2011 earthquake.
An image from a Army News March 2011 article titled, "Transport". The image shows Mr Coril, a resident from one of Christchurch's eastern suburbs, filing out paperwork for a member of the New Zealand Army. Mr Coril is receiving a chemical toilet. His suburb has been without water and power for over ten days.
An image from a Army News March 2011 photo compilation titled, "All in a Days Work". The image is captioned, "Army Driver Section Commander 3 Transport CPL Andrew Eddington and Driver PTE Shay Heketa delivered chemical toilets to Eastern suburbs which were without water and power for over 10 days".
A chalkboard sign outlining the programme for the evening of April 10th, 2011 at Gap Filler's "Film in the Gap!" project. The sign reads, "Gap Filler: 1st - 10th of April. Free live music and films from 5pm onwards. 5pm: Plasticine Heroes, I gave These Guys 5 Bucks, 6pm: The Eastern, 7pm: Film - Candyman. Bring - cushion, chair, blanket, picnic. Coffee from 4:30pm daily. Ex demolition site. Please be safety aware. Proper footwear must be worn!". The sign was stuck to the rear wall of Mitre 10 in Beckenham.
Members of the public at Gap Filler's "Film in the Gap!" project. Behind the pair is a chalkboard sign outlining the project's programme for the evening of evening of April 10th, 2011 at Gap Filler's "Film in the Gap!" project. The sign reads, "Gap Filler: 1st - 10th of April. Free live music and films from 5pm onwards. 5pm: Plasticine Heroes, I gave These Guys 5 Bucks, 6pm: The Eastern, 7pm: Film - Candyman. Bring - cushion, chair, blanket, picnic. Coffee from 4:30pm daily. Ex demolition site. Please be safety aware. Proper footwear must be worn!". The sign is stuck to the rear wall of Mitre 10 in Beckenham, facing inwards to the site of the project.
Liquefaction-induced lateral spreading during earthquakes poses a significant hazard to the built environment, as observed in Christchurch during the 2010 to 2011 Canterbury Earthquake Sequence (CES). It is critical that geotechnical earthquake engineers are able to adequately predict both the spatial extent of lateral spreads and magnitudes of associated ground movements for design purposes. Published empirical and semi-empirical models for predicting lateral spread displacements have been shown to vary by a factor of <0.5 to >2 from those measured in parts of Christchurch during CES. Comprehensive post- CES lateral spreading studies have clearly indicated that the spatial distribution of the horizontal displacements and extent of lateral spreading along the Avon River in eastern Christchurch were strongly influenced by geologic, stratigraphic and topographic features.
A poster created by Empowered Christchurch to advertise their submission to the CERA Draft Transition Recovery Plan on social media.The poster reads, "Submission. CERA Draft Transition Recovery Plan. 5. In your opinion, is there a better way to report on these recovery issues? Looking at the recovery from the perspective of the eastern suburbs, it is impossible to avoid thinking of phenomenon referred to as 'Disaster Capitalism' and considering the aspects that have already become evident in the recovery process. Loss of equity and quality of life, risk transfer and other substantial shifts are taking place. We suggest that a regular mini-census should be conducted through the remainder of the recovery at intervals of 6-12 months to monitor deprivation, insurance cover (or lack of it), mortgage, home equity, and rental status. If unexpected changes identified, investigation and correction measures should be implemented. We need a city that is driven by the people that live in it, and enabled by a bureaucracy that accepts and mitigates risks, rather than transferring them to the most vulnerable residents ."
The Canterbury Earthquake Sequence 2010-2011 (CES) induced widespread liquefaction in many parts of Christchurch city. Liquefaction was more commonly observed in the eastern suburbs and along the Avon River where the soils were characterised by thick sandy deposits with a shallow water table. On the other hand, suburbs to the north, west and south of the CBD (e.g. Riccarton, Papanui) exhibited less severe to no liquefaction. These soils were more commonly characterised by inter-layered liquefiable and non-liquefiable deposits. As part of a related large-scale study of the performance of Christchurch soils during the CES, detailed borehole data including CPT, Vs and Vp have been collected for 55 sites in Christchurch. For this subset of Christchurch sites, predictions of liquefaction triggering using the simplified method (Boulanger & Idriss, 2014) indicated that liquefaction was over-predicted for 94% of sites that did not manifest liquefaction during the CES, and under-predicted for 50% of sites that did manifest liquefaction. The focus of this study was to investigate these discrepancies between prediction and observation. To assess if these discrepancies were due to soil-layer interaction and to determine the effect that soil stratification has on the develop-ment of liquefaction and the system response of soil deposits.
Detailed studies on the sediment budget may reveal valuable insights into the successive build-up of the Canterbury Plains and their modification by Holocene fluvialaction connected to major braided rivers. Additionally, they bear implications beyond these fluvial aspects. Palaeoseismological studies claim to have detected signals of major Alpine Fault earthquakes in coastal environments along the eastern seaboard of the South Island (McFadgen and Goff, 2005). This requires high connectivity between the lower reaches of major braided rivers and their mountain catchments to generate immediate significant sediment pulses. It would be contradictory to the above mentioned hypothesis though. Obtaining better control on sediment budgets of braided rivers like the Waimakariri River will finally add significant value to multiple scientific and applied topics like regional resource management. An essential first step of sediment budget studies Is to systematically map the geomorphology, conventionally in the field and/or using remote-sensing applications, to localise, genetically identify, and classify landforms or entire toposequences of the area being investigated. In formerly glaciated mountain environments it is also indispensable to obtain all available chronological information supporting subsequent investigations.
Successful urban regeneration projects generate benefits that are realised over a much longer timeframe than normal market developments and benefits well beyond those that can be uplifted by a market developer. Consequently there is substantial evidence in the literature that successful place-making and urban regeneration projects are usually public-private partnerships and involve a funder, usually local or central government, willing to contribute ‘patient’ capital. Following the 2010 and 2011 earthquakes that devastated the centre of Christchurch, there was an urgent need to rebuild and revitalise the heart of the city, and increasing the number of people living in or near the city centre was seen as a key ingredient of that. In October 2010, an international competition was launched to design and build an Urban Village, a project intended to stimulate renewed residential development in the city. The competition attracted 58 entrants from around world, and in October 2013 the winning team was chosen from four finalists. However the team failed to secure sufficient finance, and in November 2015 the Government announced that the development would not proceed. The Government was unwilling or unable to recognise that an insistence on a pure market approach would not deliver the innovative sustainable village asked for in the competition brief, and failed to factor in the opportunity cost to government, local government, local businesses and the wider Christchurch community of delaying by many years the residential development of the eastern side of the city. As a result, the early vision of the vitality that a thriving residential neighbourhood would bring to the city has not yet been realised.
A city’s planted trees, the great majority of which are in private gardens, play a fundamental role in shaping a city’s wild ecology, ecosystem functioning, and ecosystem services. However, studying tree diversity across a city’s many thousands of separate private gardens is logistically challenging. After the disastrous 2010–2011 earthquakes in Christchurch, New Zealand, over 7,000 homes were abandoned and a botanical survey of these gardens was contracted by the Government’s Canterbury Earthquake Recovery Authority (CERA) prior to buildings being demolished. This unprecedented access to private gardens across the 443.9 hectares ‘Residential Red Zone’ area of eastern Christchurch is a unique opportunity to explore the composition of trees in private gardens across a large area of a New Zealand city. We analysed these survey data to describe the effects of housing age, socio-economics, human population density, and general soil quality, on tree abundance, species richness, and the proportion of indigenous and exotic species. We found that while most of the tree species were exotic, about half of the individual trees were local native species. There is an increasing realisation of the native tree species values among Christchurch citizens and gardens in more recent areas of housing had a higher proportion of smaller/younger native trees. However, the same sites had proportionately more exotic trees, by species and individuals, amongst their larger planted trees than older areas of housing. The majority of the species, and individuals, of the larger (≥10 cm DBH) trees planted in gardens still tend to be exotic species. In newer suburbs, gardens in wealthy areas had more native trees than gardens from poorer areas, while in older suburbs, poorer areas had more native big trees than wealthy areas. In combination, these describe, in detail unparalleled for at least in New Zealand, how the tree infrastructure of the city varies in space and time. This lays the groundwork for better understanding of how wildlife distribution and abundance, wild plant regeneration, and ecosystem services, are affected by the city’s trees.
Tree mortality is a fundamental process governing forest dynamics, but understanding tree mortality patterns is challenging because large, long-term datasets are required. Describing size-specific mortality patterns can be especially difficult, due to few trees in larger size classes. We used permanent plot data from Nothofagus solandri var. cliffortioides (mountain beech) forest on the eastern slopes of the Southern Alps, New Zealand, where the fates of trees on 250 plots of 0.04 ha were followed, to examine: (1) patterns of size-specific mortality over three consecutive periods spanning 30 years, each characterised by different disturbance, and (2) the strength and direction of neighbourhood crowding effects on sizespecific mortality rates. We found that the size-specific mortality function was U-shaped over the 30-year period as well as within two shorter periods characterised by small-scale pinhole beetle and windthrow disturbance. During a third period, characterised by earthquake disturbance, tree mortality was less size dependent. Small trees (,20 cm in diameter) were more likely to die, in all three periods, if surrounded by a high basal area of larger neighbours, suggesting that sizeasymmetric competition for light was a major cause of mortality. In contrast, large trees ($20 cm in diameter) were more likely to die in the first period if they had few neighbours, indicating that positive crowding effects were sometimes important for survival of large trees. Overall our results suggest that temporal variability in size-specific mortality patterns, and positive interactions between large trees, may sometimes need to be incorporated into models of forest dynamics.