Search

found 112 results

Images, UC QuakeStudies

A police officer directing traffic on the intersection of Worcester and Montreal Streets shortly after the 22 February 2011 earthquake. People can be seen on either side of the street, attempting to exit town and make their way home.

Images, UC QuakeStudies

A photograph of the earthquake damage to a building on Hereford Street. A column on the right side of the building has snapped and the side wall has pulled away from the building. USAR codes have been spray-painted on one of the windows on the bottom storey. In the foreground there is a police car.

Images, UC QuakeStudies

A photograph looking west down Cashel Street from the intersection of Colombo Street. A member of the New Zealand Police is sitting on an armchair near the intersection. Behind him is a HireQuip generator. Several signs from nearby businesses are on his left and right. In the background there are large piles of rubble from earthquake-damaged buildings on the street.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of The New Zealand Army, along with Police, minding the cordons. This was beside The Press building, and behind the Christchurch Cathedral. Note: these photos were taken on a cellphone; mind the quality.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. The New Zealand Army, along with Police, were minding the cordons. Note: these photos were taken on a cellphone; mind the quality.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. The New Zealand Army, along with Police, were minding the cordons. Note: these photos were taken on a cellphone; mind the quality.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. The New Zealand Army, along with Police, were minding the cordons. Note: these photos were taken on a cellphone; mind the quality.

Images, eqnz.chch.2010

The September Canterbury earthquake. These pictures were taken of Colombo Street in Sydenham. A lot of masonry in this area has been damaged/fallen down. The New Zealand Army, along with Police, were minding the cordons. Note: these photos were taken on a cellphone; mind the quality.

Images, UC QuakeStudies

A member of the New Zealand Police photographed with a member of the Los Angeles County Fire Department. Personnel from the Los Angeles County Fire Department travelled to New Zealand to help out with the search and rescue response to the 22 February 2011 earthquake.

Images, UC QuakeStudies

A photograph looking south down Manchester towards the intersection of Lichfield Street. In the distance members of the Wellington Emergency Management Office Emergency Response Team are standing next to a police car on Lichfield Street. Behind this there is a group of earthquake-damaged buildings which have spilled rubble onto Manchester Street. An excavator is parked on top of this rubble.

Images, UC QuakeStudies

A photograph of a sign on a lamp post on Bealey Avenue. The sign reads, "Attention Public, there is a cordon in effect. From the timings of 0600 to 1800 only personal with legitimate reasons and home owners are permitted to enter the cordon. Home owners, please have proof of address and identification ready for inspection. At 1800 to 0600 the cordoned area is under curfew. The only personnel permitted to enter are: health professionals, Canterbury Council staff, contractors, media. No exceptions. If you have any questions, please approach police or NZDF personnel. Thank you for your co-operation".

Images, UC QuakeStudies

A member of the New Zealand Police with a skateboard extracted from the collapsed Canterbury Television Building on Madras Street Behind him, emergency personnel can be seen searching the rubble for trapped people. Above the workers is the arm of an excavator which has been used to shift rubble.

Images, UC QuakeStudies

A view across Battersea Street in Sydenham to Churchill's Tavern, which has been badly damaged in the 22 February 2011 earthquake. Masonry from the building's top storey has collapsed onto the footpath and several of its windows have fallen out. A member of the New Zealand Police Force is walking across Colombo Street in the background.

Research papers, University of Canterbury Library

The use of post-earthquake cordons as a tool to support emergency managers after an event has been documented around the world. However, there is limited research that attempts to understand the use, effectiveness, inherent complexities, impacts and subsequent consequences of cordoning once applied. This research aims to fill that gap by providing a detailed understanding of first, the cordons and associated processes, and their implications in a post-earthquake scenario. We use a qualitative method to understand cordons through case studies of two cities where it was used in different temporal and spatial scales: Christchurch (2011) and Wellington (Kaikōura earthquake 2016), New Zealand. Data was collected through 21 expert interviews obtained through purposive and snowball sampling of key informants who were directly or indirectly involved in a decision-making role and/or had influence in relation to the cordoning process. The participants were from varying backgrounds and roles i.e. emergency managers, council members, business representatives, insurance representatives, police and communication managers. The data was transcribed, coded in Nvivo and then grouped based on underlying themes and concepts and then analyzed inductively. It is found that cordons are used primarily as a tool to control access for the purpose of life safety and security. But cordons can also be adapted to support recovery. Broadly, it can be synthesized and viewed based on two key aspects, ‘decision-making’ and ‘operations and management’, which overlap and interact as part of a complex system. The underlying complexity arises in large part due to the multitude of sectors it transcends such as housing, socio-cultural requirements, economics, law, governance, insurance, evacuation, available resources etc. The complexity further increases as the duration of cordon is extended.

Research papers, The University of Auckland Library

The supply of water following disasters has always been of significant concern to communities. Failure of water systems not only causes difficulties for residents and critical users but may also affect other hard and soft infrastructure and services. The dependency of communities and other infrastructure on the availability of safe and reliable water places even more emphasis on the resilience of water supply systems. This thesis makes two major contributions. First, it proposes a framework for measuring the multifaceted resilience of water systems, focusing on the significance of the characteristics of different communities for the resilience of water supply systems. The proposed framework, known as the CARE framework, consists of eight principal activities: (1) developing a conceptual framework; (2) selecting appropriate indicators; (3) refining the indicators based on data availability; (4) correlation analysis; (5) scaling the indicators; (6) weighting the variables; (7) measuring the indicators; and (8) aggregating the indicators. This framework allows researchers to develop appropriate indicators in each dimension of resilience (i.e., technical, organisational, social, and economic), and enables decision makers to more easily participate in the process and follow the procedure for composite indicator development. Second, it identifies the significant technical, social, organisational and economic factors, and the relevant indicators for measuring these factors. The factors and indicators were gathered through a comprehensive literature review. They were then verified and ranked through a series of interviews with water supply and resilience specialists, social scientists and economists. Vulnerability, redundancy and criticality were identified as the most significant technical factors affecting water supply system robustness, and consequently resilience. These factors were tested for a scenario earthquake of Mw 7.6 in Pukerua Bay in New Zealand. Four social factors and seven indicators were identified in this study. The social factors are individual demands and capacities, individual involvement in the community, violence level in the community, and trust. The indicators are the Giving Index, homicide rate, assault rate, inverse trust in army, inverse trust in police, mean years of school, and perception of crime. These indicators were tested in Chile and New Zealand, which experienced earthquakes in 2010 and 2011 respectively. The social factors were also tested in Vanuatu following TC Pam, which hit the country in March 2015. Interestingly, the organisational dimension contributed the largest number of factors and indicators for measuring water supply resilience to disasters. The study identified six organisational factors and 17 indicators that can affect water supply resilience to disasters. The factors are: disaster precaution; predisaster planning; data availability, data accessibility and information sharing; staff, parts, and equipment availability; pre-disaster maintenance; and governance. The identified factors and their indicators were tested for the case of Christchurch, New Zealand, to understand how organisational capacity affected water supply resilience following the earthquake in February 2011. Governance and availability of critical staff following the earthquake were the strongest organisational factors for the Christchurch City Council, while the lack of early warning systems and emergency response planning were identified as areas that needed to be addressed. Economic capacity and quick access to finance were found to be the main economic factors influencing the resilience of water systems. Quick access to finance is most important in the early stages following a disaster for response and restoration, but its importance declines over time. In contrast, the economic capacity of the disaster struck area and the water sector play a vital role in the subsequent reconstruction phase rather than in the response and restoration period. Indicators for these factors were tested for the case of the February 2011 earthquake in Christchurch, New Zealand. Finally, a new approach to measuring water supply resilience is proposed. This approach measures the resilience of the water supply system based on actual water demand following an earthquake. The demand-based method calculates resilience based on the difference between water demand and system capacity by measuring actual water shortage (i.e., the difference between water availability and demand) following an earthquake.