Search

found 174 results

Images, UC QuakeStudies

Liquefaction 'volcanos' in Kaiapoi, after the September 4th earthquake. Silt erupted out of the ground, piling up over the surface and leaving cracks at the mouth of the volcano.

Images, UC QuakeStudies

A truck laying gravel on the corner of Avonside Drive and Retreat Road, with road cones and "Road Closed" sign, after the September 4th earthquake.

Images, UC QuakeStudies

Damage to the the shops on the corner of Colombo Street and Bealey Avenue. The facade on the roof has crumbled, as well as the awning over the pharmacy. Road cones, tape and fences bar the public for their own safety.

Images, UC QuakeStudies

Damage to a house in Pines Beach, after the September 4th earthquake. The chimney has been shaken out from the wall.

Images, UC QuakeStudies

Cracks partially repaired on Woodham Road in Avonside, with road cones warning cars of rubble, after the September 4th earthquake.

Images, UC QuakeStudies

Photograph captioned by BeckerFraserPhotos, "People at the cordon on the corner of Durham and St Asaph Street, soldiers watching by. In the background is the Environment Court building at 83 Armagh Street, formerly the Canterbury Society of Arts. This building was added to the CERA demolitions list on 5 March 2012".

Research papers, The University of Auckland Library

Predictive modelling provides an efficient means to analyse the coastal environment and generate knowledge for long term urban planning. In this study, the numerical models SWAN and XBeach were incorporated into the ESRI ArcGIS interface by means of the BeachMMtool. This was applied to the Greater Christchurch coastal environment to simulate geomorphological evolution through hydrodynamic forcing. Simulations were performed using the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013) to determine whether the statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 are consistent with central, regional and district designations. Our results indicate that current land use zoning in Greater Christchurch is not consistent with these predictions. This is because coastal hazard risk has not been thoroughly quantified during the process of installing the Canterbury Earthquake Recovery Authority residential red zone. However, the Christchurch City Council’s flood management area does provide an extent to which managed coastal retreat is a real option. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon.

Research Papers, Lincoln University

Predictive modelling provides an efficient means to analyse the coastal environment and generate knowledge for long term urban planning. In this study, the numerical models SWAN and XBeach were incorporated into the ESRI ArcGIS interface by means of the BeachMMtool. This was applied to the Greater Christchurch coastal environment to simulate geomorphological evolution through hydrodynamic forcing. Simulations were performed using the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013) to determine whether the statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 are consistent with central, regional and district designations. Our results indicate that current land use zoning in Greater Christchurch is not consistent with these predictions. This is because coastal hazard risk has not been thoroughly quantified during the process of installing the Canterbury Earthquake Recovery Authority residential red zone. However, the Christchurch City Council’s flood management area does provide an extent to which managed coastal retreat is a real option. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon.