
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
Slipping of the tectonic plates caused tension cracks on this previously unknown faultline that runs through this paddock; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
This originally straight farm fence has been laterally displaced at least 2 metres where it crosses the previously unknown faultline from which the Saturday 4 September 2010 earthquake originated.
This originally straight farm fence has been laterally displaced at least 2 metres where it crosses the previously unknown faultline from which the Saturday 4 September 2010 earthquake originated.
Looking along this previously unknown faultline that runs through this paddock, note how the ground had heaved and subsided; magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
The faultline cuts across Telegraph Road, leaving a kink in its originally straight alignment; aftermath of the magnitude 7.1 earthquake in mid-Canterbury on Saturday 4 September 2010.
Damage to the St John The Evangelist Catholic Church in Leeston suffered during the magnitude 7.1 earthquake that struck mid-Canterbury on Saturday 4 September 2010.
Hehehe ..... did the surveyors get the road setout wrong? This previously straight road is now kinked across this previously unknown faultline along which the Saturday 4 September 2010 magnitude 7.1 earthquake originated.
Hehehe ..... did the surveyors get the road setout wrong? This previously straight road is now kinked across this previously unknown faultline along which the Saturday 4 September 2010 magnitude 7.1 earthquake originated.
The farmers in this area swore that this road was straight when they were returning from the pub on Friday 3 September 2010, the night before the magnitude 7.1 earthquake struck.
The farmers in this area swore that this road was straight when they were returning from the pub on Friday 3 September 2010, the night before the magnitude 7.1 earthquake struck.
Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield. Damaged spire-tops lie on the ground after being removed from the church tower".
The 2010 Darfield and 2011 Christchurch Earthquakes triggered extensive liquefaction-induced lateral spreading proximate to streams and rivers in the Christchurch area, causing significant damage to structures and lifelines. A case study in central Christchurch is presented and compares field observations with predicted displacements from the widely adopted empirical model of Youd et al. (2002). Cone penetration testing (CPT), with measured soil gradation indices (fines content and median grain size) on typical fluvial deposits along the Avon River were used to determine the required geotechnical parameters for the model input. The method presented attempts to enable the adoption of the extensive post-quake CPT test records in place of the lower quality and less available Standard Penetration Test (SPT) data required by the original Youd model. The results indicate some agreement between the Youd model predictions and the field observations, while the majority of computed displacements error on the side of over-prediction by more than a factor of two. A sensitivity analysis was performed with respect to the uncertainties used as model input, illustrating the model’s high sensitivity to the input parameters, with median grain size and fines content among the most influential, and suggesting that the use of CPT data to quantify these parameters may lead to variable results.
Among the deformation features produced in Christchurch by the September 4th Darfield Earthquake were numerous and widespread “sand volcanoes”. Most of these structures occurred in urban settings and “erupted” through a hardened surface of concrete or tarseal, or soil. Sand volcanoes were also widespread in the Avon‐ Heathcote Estuary and offered an excellent opportunity to readily examine shallow subsurface profiles and as such the potential appearance of such structures in the rock record.
The St John The Evangelist Catholic Church in Leeston was cordoned off due to damage suffered during the magnitude 7.1 earthquake that struck mid-Canterbury on Saturday 4 September 2010.
The St John The Evangelist Catholic Church in Leeston was cordoned off due to damage suffered during the magnitude 7.1 earthquake that struck mid-Canterbury on Saturday 4 September 2010.
The farmer swore that his fence was erected in a straingt line, but mother nature had other ideas! Aftermath of the Saturday 4 September 2010 magnitude 7.1 earthquake at the previously unknown faultline along which the quake originated.
The farmer swore that his hedge was planted in a straingt line, but mother nature had other ideas! Aftermath of the Saturday 4 September 2010 magnitude 7.1 earthquake at the previously unknown faultline along which the quake originated.
The magnitude 7.1 earthquake that struck mid-Canterbury on Saturday 4 September 2010 broke the tip of the spire of the St John The Evangelist Catholic Church in Leeston
The farmer swore that his fence was erected in a straingt line, but mother nature had other ideas! Aftermath of the Saturday 4 September 2010 magnitude 7.1 earthquake at the previously unknown faultline along which the quake originated.
The farmer swore that his fence and hedge were in a straingt line, but mother nature had other ideas! Aftermath of the Saturday 4 September 2010 magnitude 7.1 earthquake at the previously unknown faultline along which the quake originated.
The ground slipped laterally at this previously unknown faultline across Highfield Road in mid-Canterbury, resulting in a relative displacement of at least 2 metres and the magnitude 7.1 earthquake on Saturday 4 September 2010. Note the now misaligned fence posts, hedge and road.
Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield. (L to R): Builder Kevin Deam and St. Mary's parishioner Craig Perkins inspect a damaged spire on the church tower".
Photograph captioned by Fairfax, "New Zealand's Governor-General Anand Satyanand and his wife Susan Satyanand visited sites around earthquake-stricken Canterbury today. Satyanand at the epicentre near Darfield where the new fault line can be clearly seen across a rural paddock".
Photograph captioned by Fairfax, "New Zealand's Governor-General Anand Satyanand and his wife Susan Satyanand visited sites around earthquake stricken Canterbury today. Satyanand at the epicentre near Darfield where the new fault line can be clearly seen across a rural paddock".
Photograph captioned by Fairfax, "New Zealand's Governor-General Anand Satyanand and his wife Susan Satyanand visited sites around earthquake stricken Canterbury today. Satyanand at the epicentre near Darfield where the new fault line can be clearly seen across a rural paddock".
Photograph captioned by Fairfax, "New Zealand's Governor-General Anand Satyanand and his wife Susan Satyanand visited sites around earthquake stricken Canterbury today. Satyanand at the epicentre near Darfield where the new fault line can be clearly seen across a rural paddock".
Rolleston/Burnham, South Island, NZ This used to be a perfectly straight and flat road!
Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield. Damage can be seen to the spires on the church tower. The spire-tops were removed for safety and to be repaired".
On 22 February 2011,a magnitude Mw 6.3 earthquake occurred with an epicenter located near Lyttelton at about 10km from Christchurch in Canterbury region on the South Island of New Zealand (Figure 1). Since this earthquake occurred in the midst of the aftershock activity which had continued since the 4 September 2010 Darfield Earthquake occurrence, it was considered to be an aftershock of the initial earthquake. Because of the short distance to the city and the shallower depth of the epicenter, this earthquake caused more significant damage to pipelines, traffic facilities, residential houses/properties and multi-story buildings in the central business district than the September 2010 Darfield Earthquake in spite of its smaller earthquake magnitude. Unfortunately, this earthquake resulted in significant number of casualties due to the collapse of multi-story buildings and unreinforced masonry structures in the city center of Christchurch. As of 4 April, 172 casualties were reported and the final death toll is expected to be 181. While it is extremely regrettable that Christchurch suffered a terrible number of victims, civil and geotechnical engineers have this hard-to-find opportunity to learn the response of real ground from two gigantic earthquakes which occurred in less than six months from each other. From geotechnical engineering point of view, it is interesting to discuss the widespread liquefaction in natural sediments, repeated liquefaction within short period and further damage to earth structures which have been damaged in the previous earthquake. Following the earthquake, an intensive geotechnical reconnaissance was conducted to capture evidence and perishable data from this event. The team included the following members: Misko Cubrinovski (University of Canterbury, NZ, Team Leader), Susumu Yasuda (Tokyo Denki University, Japan, JGS Team Leader), Rolando Orense (University of Auckland, NZ), Kohji Tokimatsu (Tokyo Institute of Technology, Japan), Ryosuke Uzuoka (Tokushima University, Japan), Takashi Kiyota (University of Tokyo, Japan), Yasuyo Hosono (Toyohashi University of Technology, Japan) and Suguru Yamada (University of Tokyo, Japan).