The old Railway Station clock tower on Moorhouse Avenue with plywood and steel reinforcement covering two sides, and a crane hanging over top. The brickwork suffered extensive cracking during the earthquake making it in need of reinforcement. The clock has stopped at around 16:35, the time of the earthquake.
The old Railway Station clock tower on Moorhouse Avenue with plywood and steel reinforcement covering two sides, and a crane hanging over top. The brickwork suffered extensive cracking during the earthquake making it in need of reinforcement. The clock has stopped at around 16:35, the time of the earthquake.
A photograph of the earthquake damage to a building in central Christchurch. Broken glass and other rubble litters the courtyard in front of the building. There is a large crack in the brick wall to the right. A red sticker on the glass door indicates that the building is unsafe to enter.
A house on Avonside Drive showing damage from the 4 September 2010 earthquake. Numerous cracks in the masonry can be seen, and several sections of brick have fallen off the walls. The building's porch has also collapsed. A pile of dried liquefaction is visible in the driveway.
A photograph of the earthquake damage to a brick wall of a building on Acton Street. Large sections of the wall have fallen away. The remaining section has large cracks between the bricks. A boat which was being stored inside has toppled over and is now sticking out of the building.
Damage to River Road in Richmond. The road is badly cracked and buckled, and is partly blocked off with road cones and warning tape. In the background is a truck carrying more road cones and signs. The photographer comments, "Major slumps and cracks along River Rd. Near 381 River Rd, looking towards the Banks Ave - Dallington Terrace corner".
Defence Force personnel walking down Norwich Quay during an operational tour of Lyttelton taken by Commander Joint Forces New Zealand, Air Vice Marshal Peter Stockwell and Chief of Army Tim Keating to view the aftermath of the Christchurch Earthquake. A large crack can be seen in the footpath.
A photograph of the earthquake damage to St Elmo Courts on the corner of Hereford and Montreal Streets. There are large cracks in the building's façade. USAR codes have been spray-painted on one of the windows. Police tape has been draped around the building as a cordon.
Internal damage to a house in Richmond. A doorframe has visibly warped, leaving a gap between the frame and the door. Outside, cracks can be seen in the concrete patio. The photographer comments, "Sunroom - bifold doors are now separated from the frame. The doors on the left blew right out in a strong wind 2 weeks after the quake".
Damage to Lyttelton following the 22 February 2011 earthquake. Ground Culinary Centre on the corner of London and Canterbury Streets. The wall on the top storey has crumbled into the street, covering the footpath in bricks. Large cracks can be seen above the door, coming out from the corners of the window.
One end of the Arts Centre photographed shortly after the 22 February 2011 earthquake. The gable of the building has crumbled and fallen to the ground, collapsing an awning. A large crack can be seen in the corner tower. Blue ties can be seen at the top of the tower, used to brace the structure after the 4 September 2010. This has probably limited the damage caused by the 22 February 2011 earthquake.
A view across Wakefield Avenue in Sumner to several local businesses, including Sumner Asian Restaurant, KB's Bakery, Harcourt's and The Ruptured Duck Pizzeria and Bar. Metal pipes can be seen bracing the balcony and walls of the building housing Harcourt's and The Ruptured Duck. The building has been cordoned off by a safety fence, and large cracks are visible in its walls and cornice.
A car on Rowses Road has its wheels embedded in liquefaction. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".
New Zealand’s stock of unreinforced masonry (URM) bearing wall buildings was principally constructed between 1880 and 1935, using fired clay bricks and lime or cement mortar. These buildings are particularly vulnerable to horizontal loadings such as those induced by seismic accelerations, due to a lack of tensile force-resisting elements in their construction. The poor seismic performance of URM buildings was recently demonstrated in the 2011 Christchurch earthquake, where a large number of URM buildings suffered irreparable damage and resulted in a significant number of fatalities and casualties. One of the predominant failure modes that occurs in URM buildings is diagonal shear cracking of masonry piers. This diagonal cracking is caused by earthquake loading orientated parallel to the wall surface and typically generates an “X” shaped crack pattern due to the reversed cyclic nature of earthquake accelerations. Engineered Cementitious Composite (ECC) is a class of fiber reinforced cement composite that exhibits a strain-hardening characteristic when loaded in tension. The tensile characteristics of ECC make it an ideal material for seismic strengthening of clay brick unreinforced masonry walls. Testing was conducted on 25 clay brick URM wallettes to investigate the increase in shear strength for a range of ECC thicknesses applied to the masonry wallettes as externally bonded shotcrete reinforcement. The results indicated that there is a diminishing return between thickness of the applied ECC overlay and the shear strength increase obtained. It was also shown that, the effectiveness of the externally bonded reinforcement remained constant for one and two leaf wallettes, but decreased rapidly for wall thicknesses greater than two leafs. The average pseudo-ductility of the strengthened wallettes was equal to 220% of that of the as-built wallettes, demonstrating that ECC shotcrete is effective at enhancing both the in-plane strength and the pseudo-ductility of URM wallettes. AM - Accepted Manuscript
A truck stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".
Damage to River Road in Richmond. The road surface is badly cracked and slumped, and liquefaction silt covers part of the road. Two people in gumboots walk towards a barrier erected across the road using road cones and warning tape, and in the background the badly twisted Medway Street bridge can be seen. The photographer comments, "Longitudinal cracks indicate lateral movement as the land sagged towards the river. Near 373 River Rd, looking south-east towards Medway St. The Medway St bridge is visible in the background".
Damage to a house in Richmond. The foundation is all that remains of one room, and the exposed interior wall has been covered with builders' paper for protection. Weeds grow between cracks in the concrete patio. The photographer comments, "Revisiting our abandoned house. Cracked patio. The wooden floor is all that remains of a sunny living space with bifold doors, opening the house to the garden. This was so broken on 4/9/10 that it was immediately demolished".
The Arts Centre photographed shortly after the 22 February 2011 earthquake. A large crack can be seen in the tower and part of the brickwork around the clock has collapsed onto the pavement below. Scaffolding was placed up against the building after the 4 September 2010 earthquake and the gable was braced with wooden planks. This probably limited the damage to this part of the building. The building has been cordoned off with tape reading, 'Danger keep out'. A sign in front of the door reads, 'Site closed'.
A photograph submitted by Gaynor James to the QuakeStories website. The description reads, "DTZ building going, 20 July 2011. A small crowd watches the demolition …There is an eerie silence- no excited buzz – people watching yet another part of their history turning into rubble. The wrecking ball, delicately positioned, drops and is followed by the cracking and rending of floor after floor and the debris tumbles down … It starts to clear and an extraordinary sight greets us. Hundreds and hundreds of sheets of paper drift down like giant confetti.".
A photograph of a Wellington Emergency Management Office Emergency Response Team member talking to a member of the Professional Building Services on Gloucester Street. In the background is the Press House building with many cracks in the façade. Bits of bricks and other debris are scattered across the footpath. Some of the windows above the facade have broken. USAR codes have been spray-painted on one of the bottom-storey windows.
A truck stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole, and a digger is attempting to dig the truck out. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".
A car stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole, lifting the back wheels off the ground. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".
A truck stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole, and a digger is attempting to dig the truck out. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".
Two men converse on the site of Gap Filler's "Film in the Gap!" project. Behind them is a chalkboard sign outlining the programme for the evening of April 2nd, 2011. The sign reads, "Gap Filler: 1st - 10th of April. Free live music and films from 6pm onwards. Saturday: 5pm: The Captain Willis Trio, 6pm: Ed Muzik, 7pm: The Cracks in Everything, 8pm: Film - 4 Houses, 4 Decades (Christchurch Architecture). All welcome! Bring a blanket or cushion. Ex demolition site. Please be safety aware. Proper footwear must be worn!".
A car stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole, lifting the back wheels off the ground. A line of other vehicles drive around the partially-submerged car. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".
A car stuck in liquefaction on Breezes Road. The front wheels have fallen into a submerged pothole, lifting the back wheels off the ground. A line of other vehicles drive around the partially-submerged car. The photographer comments, "The most common sight was extensive damage to the roads. Papanui, Breezes, Wainoni, Shortland Street and many more roads had large cracks and large sink holes. There were approximately 6 cars and 1 large Ready Mix cement truck that had fallen into holes within a few blocks of each other. All people appear to have escaped without serious injury as far as I could tell".
A photograph of the earthquake damage to the Avonmore House on the corner of Hereford Street and Latimer Square. Large cracks have formed in the building, causing sections of the masonry to crumble. The windows on the Hereford Street side of the building have bent out of shape and many of the glass panes have shattered. USAR codes have been spray painted on the column next to the door. In the distance wire fencing has been placed across the street as a cordon.
Two children running across the empty lot in Beckenham that housed Gap Filler's "Film in the Gap!" project. Behind them is a chalkboard sign outlining the programme for the evening of April 2nd, 2011. The sign reads, "Gap Filler: 1st - 10th of April. Free live music and films from 6pm onwards. Saturday: 5pm: The Captain Willis Trio, 6pm: Ed Muzik, 7pm: The Cracks in Everything, 8pm: Film - 4 Houses, 4 Decades (Christchurch Architecture). All welcome! Bring a blanket or cushion. Ex demolition site. Please be safety aware. Proper footwear must be worn!".
Reinforced concrete buildings that satisfied modern seismic design criteria generally behaved as expected during the recent Canterbury and Kaikoura earthquakes in New Zealand, forming plastic hinges in intended locations. While this meant that life-safety performance objectives were met, widespread demolition and heavy economic losses took place in the aftermath of the earthquakes.The Christchurch central business district was particularly hard hit, with over 60% of the multistorey reinforced concrete buildings being demolished. A lack of knowledge on the post-earthquake residual capacity of reinforced concrete buildings was a contributing factor to the mass demolition.Many aspects related to the assessment of earthquake-damaged reinforced concrete buildings require further research. This thesis focusses on improving the state of knowledge on the post earthquakeresidual capacity and reparability of moderately damaged plastic hinges, with an emphasis on plastic hinges typical of modern moment frame structures. The repair method focussed on is epoxy injection of cracks and patching of spalled concrete. A targeted test program on seventeen nominally identical large-scale ductile reinforced concrete beams, three of which were repaired by epoxy injection following initial damaging loadings, was conducted to support these objectives. Test variables included the loading protocol, the loading rate, and the level of restraint to axial elongation.The information that can be gleaned from post-earthquake damage surveys is investigated. It is shown that residual crack widths are dependent on residual deformations, and are not necessarily indicative of the maximum rotation demands or the plastic hinge residual capacity. The implications of various other types of damage typical of beam and column plastic hinges are also discussed.Experimental data are used to demonstrate that the strength and deformation capacity of plastic hinges with modern seismic detailing are often unreduced as a result of moderate earthquake induced damage, albeit with certain exceptions. Special attention is given to the effects of prior yielding of the longitudinal reinforcement, accounting for the low-cycle fatigue and strain ageing phenomena. A material-level testing program on the low-cycle fatigue behaviour of grade 300E reinforcing steel was conducted to supplement the data available in the literature.A reduction in stiffness, relative to the initial secant stiffness to yield, occurs due to moderate plastic hinging damage. This reduction in stiffness is shown to be correlated with the ductility demand,and a proposed model gives a conservative lower-bound estimate of the residual stiffness following an arbitrary earthquake-type loading. Repair by epoxy injection is shown to be effective in restoring the majority of stiffness to plastic hinges in beams. Epoxy injection is also shown to have implications for the residual strength and elongation characteristics of repaired plastic hinges.
This thesis presents an assessment of historic seismic performance of the New Zealand stopbank network from the 1968 Inangahua earthquake through to the 2016 Kaikōura earthquake. An overview of the types of stopbanks and the main aspects of the design and construction of earthen stopbanks was presented. Stopbanks are structures that are widely used on the banks of rivers and other water bodies to protect against the impact of flood events. Earthen stopbanks are found to be the most used for such protection measures. Different stopbank damage or failure modes that may occur due to flooding or earthquake excitation were assessed with a focus on past earthquakes internationally, and examples of these damage and failure modes were presented. Stopbank damage and assessment reports were collated from available reconnaissance literature to develop the first geospatial database of stopbank damage observed in past earthquakes in New Zealand. Damage was observed in four earthquakes over the past 50 years, with a number of earthquakes resulting in no stopbank damage. The damage database therefore focussed on the Edgecumbe, Darfield, Christchurch and Kaikōura earthquakes. Cracking of the crest and liquefaction-induced settlement were the most common forms of damage observed. To understand the seismic demand on the stopbank network in past earthquakes, geospatial analyses were undertaken to approximate the peak ground acceleration (PGA) across the stopbank network for ten large earthquakes that have occurred in New Zealand over the past 50 years. The relationship between the demand, represented by the peak ground acceleration (PGA) and damage is discussed and key trends identified. Comparison of the seismic demand and the distribution of damage suggested that the seismic performance of the New Zealand stopbank network has been generally good across all events considered. Although a significant length of the stopbank networks were exposed to high levels of shaking in past events, the overall damage length was a small percentage of this. The key aspect controlling performance was the performance of the underlying foundation soils and the effect of this on the stopbank structure and stability.