Search

found 1333 results

Research papers, University of Canterbury Library

Disaster recovery is significantly affected by funding availability. The timeliness and quality of recovery activities are not only impacted by the extent of the funding but also the mechanisms with which funding is prioritised, allocated and delivered. This research addresses the impact of funding mechanisms on the effectiveness and efficiency of post-disaster demolition and debris management programmes. A qualitative assessment of the impacts on recovery of different funding sources and mechanisms was carried out, using the 2010 Canterbury Earthquake as well as other recent international events as case studies. The impacts assessed include: timeliness, completeness, environmental, economic and social impacts. Of the case studies investigated, the Canterbury Earthquake was the only disaster response to rely solely on a privatised approach to insurance for debris management. Due to the low level of resident displacement and low level of hazard in the waste, this was a satisfactory approach, though not ideal. This approach has led to greater organisational complexity and delays. For many other events, the potential community wide impacts caused by the prolonged presence of disaster debris means that publicly funded and centrally facilitated programmes appear to be the most common and effective method of managing disaster waste.

Images, UC QuakeStudies

A pile of bricks, mortar, concrete and rusty metal constituting the remains of Beckenham Baptist Church on Colombo Street. A white sign has been erected outside the church reading, "Our church is still meeting. Please join us on Sunday. We gather in the youth hall, access is from #7 Percival St. (Turn left on Tennyson then left again on Percival)".

Images, UC QuakeStudies

The Harbourlight Theatre on London Street in Lyttelton. There is cracking along the side of the building and damage to the domes on top of the towers. Bracing has been placed at the top to limit further damage and to stop debris from falling on the road.