
A photograph of a tractor with a rotary hoe flattening a liquefaction blister on a farm near River Road in Lincoln.
A badly damaged footpath at the end of Acland Avenue in Avonside. Dried liquefaction silt can be seen covering the pavement.
Photograph captioned by BeckerFraserPhotos, "Ross Becker standing on the Town Hall steps which have been badly affected by liquefaction".
A police car drives down a liquefaction-covered Geraldine Street in St Albans, past residents with shovels and wheelbarrows clearing silt.
Cracks in a fence on a Residential property in Avonside, and liquefaction on the footpath, after the September 4th earthquake.
Abandoned residential properties on Seabreeze Close in Bexley. The front yards and footpaths are covered with weeds and silt from liquefaction.
Road damage between St Paul's School and Gayhurst Road bridge. The road has slumped near the curb, probably due to liquefaction.
An abandoned residential property at 23 Waygreen Avenue in New Brighton. The section is covered with weeds and silt from liquefaction.
Building rubble and liquefaction on the footpath outside the former Public Library on the corner of Hereford Street and Cambridge Terrace.
An abandoned residential property on Waireka Lane in Bexley. The road and footpath are covered with weeds and silt from liquefaction.
Photograph captioned by Fairfax, "Marlborough Civil Defence manager Ross Hamilton inspects the liquefaction damage at a property in Seabreeze Close, Bexley".
The 22 February 2011, Mw6.2-6.3 Christchurch earthquake is the most costly earthquake to affect New Zealand, causing 181 fatalities and severely damaging thousands of residential and commercial buildings, and most of the city lifelines and infrastructure. This manuscript presents an overview of observed geotechnical aspects of this earthquake as well as some of the completed and on-going research investigations. A unique aspect, which is particularly emphasized, is the severity and spatial extent of liquefaction occurring in native soils. Overall, both the spatial extent and severity of liquefaction in the city was greater than in the preceding 4th September 2010 Darfield earthquake, including numerous areas that liquefied in both events. Liquefaction and lateral spreading, variable over both large and short spatial scales, affected commercial structures in the Central Business District (CBD) in a variety of ways including: total and differential settlements and tilting; punching settlements of structures with shallow foundations; differential movements of components of complex structures; and interaction of adjacent structures via common foundation soils. Liquefaction was most severe in residential areas located to the east of the CBD as a result of stronger ground shaking due to the proximity to the causative fault, a high water table approximately 1m from the surface, and soils with composition and states of high susceptibility and potential for liquefaction. Total and differential settlements, and lateral movements, due to liquefaction and lateral spreading is estimated to have severely compromised 15,000 residential structures, the majority of which otherwise sustained only minor to moderate damage directly due to inertial loading from ground shaking. Liquefaction also had a profound effect on lifelines and other infrastructure, particularly bridge structures, and underground services. Minor damage was also observed at flood stop banks to the north of the city, which were more severely impacted in the 4th September 2010 Darfield earthquake. Due to the large high-frequency ground motion in the Port hills numerous rock falls and landslides also occurred, resulting in several fatalities and rendering some residential areas uninhabitable.
A photograph of a detour sign on Ferry Road.
Results from a series of 1D seismic effective stress analyses of natural soil deposits from Christchurch are summarized. The analysed soil columns include sites whose performance during the 2010-2011 Canterbury earthquakes varied significantly, from no liquefaction manifestation at the ground surface to very severe liquefaction, in which case a large area of the site was covered by thick soil ejecta. Key soil profile characteristics and response mechanisms affecting the severity of surface liquefaction manifestation and subsequent damage are explored. The influence of shaking intensity on the triggering and contribution of these mechanisms is also discussed. Careful examination of the results highlights the importance of considering the deposit as a whole, i.e. a system of layers, including interactions between layers in the dynamic response and through pore water pressure redistribution and water flow.
In 2010 and 2011 a series of earthquakes hit the central region of Canterbury, New Zealand, triggering widespread and damaging liquefaction in the area of Christchurch. Liquefaction occurred in natural clean sand deposits, but also in silty (fines-containing) sand deposits of fluvial origin. Comprehensive research efforts have been subsequently undertaken to identify key factors that influenced liquefaction triggering and severity of its manifestation. This research aims at evaluating the effects of fines content, fabric and layered structure on the cyclic undrained response of silty soils from Christchurch using Direct Simple Shear (DSS) tests. This poster outlines preliminary calibration and verification DSS tests performed on a clean sand to ensure reliability of testing procedures before these are applied to Christchurch soils.
Labour Party leader Phil Goff speaking to members of the Student Volunteer Army in the UCSA car park outside the UCSA's "Big Top" tent. The tent was erected to provide support for students at the University of Canterbury in the aftermath of the 22 February 2011 earthquake. Behind them members of the Student Volunteer Army are assembling wheelbarrows which will be used to clear liquefaction from Christchurch properties.
A photograph of a large trench at the entrance to a street in Christchurch. There is water and liquefaction in the trench. Road cones have been placed around it as a warning. In the background, two personnel from the New Zealand Army are guarding the entrance to the street. They are wearing their army uniforms and high-visibility vests.
A photograph of the earthquake damage to the corner of Woodham Road and Avonside Drive. There are large cracks in the road, and flooding and liquefaction. Wire fencing and road cones have been placed around parts of the road that are unsafe. Two signs reading, "Road closed" and, "No entry" can be seen at the entrance to Avonside Drive.
A photograph of boxes of broken china stored in a bedroom.Crack'd for Christchurch comments, "May 2011, Crack'd has been going for a month. The china begins to collect in our spare room. It often arrived covered in liquefaction and broken glass, food and mud, and it was incredibly bulky. It had to be cleaned, sorted, but not broken down, before it was stored."
Our Street - Liquefaction (22.02.2011) Woolston Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleaning system + Wide-...
Our Street - Liquefaction Sand (23.02.2011) Woolston Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleaning system + ...
Vehicles Stuck - Our Street - Liquefaction (23.02.2011) Woolston Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleani...
Our Street - Liquefaction (22.02.2011) Woolston Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleaning system + Wide-...
Our Street - Liquefaction Sand (23.02.2011) Woolston Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleaning system + ...
Vehicles Stuck - Our Street - Liquefaction (23.02.2011) Woolston Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleani...
Vehicles Stuck - Our Street - Liquefaction (23.02.2011) Woolston Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleani...
Our Street - Liquefaction (22.02.2011) Woolston Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleaning system + Wide-...
Vehicles Stuck - Our Street - Liquefaction (23.02.2011) Woolston Christchurch Canterbury New Zealand © 2011 Phil Le Cren Photo Taken With: Canon EOS 1000D + Canon EF/EF-S lenses + 10.1 effective megapixels + 2.5-inch TFT color LCD monitor + Eye-level pentamirror SLR + Live View shooting. + EOS Built-in Sensor cleani...
An abandoned residential property on Seabreeze Close in Bexley. The front yard and footpath are covered with weeds and silt from liquefaction.
A private driveway off Halswell Road with extensive cracking. The driveway has slumped into the creek due to liquefaction from the earthquake.