New Zealand is one of the most highly urbanised countries in the world with well over 87 per cent of us living in 138 recognised urban centres, yet the number of people residing in inner city areas is proportionally very low. Householders have been exercising their preference for suburban or rural areas by opting for low density suburban environments. It is widely agreed that productivity and sustainability increase when people aggregate in the inner city, however there is a perceived trade-off between the density and liveability of an area. Achieving liveability in the inner city is concerned with reducing the pressures which emerge from higher population densities. Promoting inclusive societies, revitalising underutilised cityscapes, ensuring accessibility and fostering sense of place, are all elements essential to achieving liveable communities. The rebuild following the 2010 and 2011 Canterbury earthquakes provides Christchurch with an opportunity to shape a more environmentally sustainable, economically vibrant and liveable city. This research involves undertaking a case study of current inner city liveability measures and those provided for through the rebuild. A cross-case analysis with two of the world’s most liveable cities, Melbourne and Vancouver, exposes Christchurch’s potential shortcomings and reveals practical measures the city could implement in order to promote liveability.
Planning in New Zealand in 2014 has largely been dominated by housing and urban development, potential local government and legislative reforms, and water issues. This volume’s peer reviewed research, which combines Issues 1 and 2, focuses on these issues, but with perspectives and issues that are outside the mainstream. In our lead research article, John Ryks and his co-authors review the opportunities from Treaty settlements and legislative provisions and challenges for Māori participation in urban development, such as the balancing of matawaka and mana whenua perspectives. Water issues are picked up by Ronlyn Duncan and Phil Holland who each take constructively critical views toward some currently well-regarded approaches to resolutions. We have reflective and somewhat contrasting contributions from two highly respected semi-retired planners, Malcolm Douglass (FNZPI) and Derek Hall, that challenge aspects of New Zealand’s current approach to planning. In our outreach part of this Volume we include the response of some political parties to questions put to them about planning by LPR team member Nicole Read. Finally, Lincoln University appears to have turned a corner after the earthquakes, at least in the planning programmes.
Abstract The original intention for the Partnership Community Worker (PCW) project in 2006 was for it to be an extension of the Pegasus Health General Practice and furthermore to be a bridge between the community and primary healthcare. It was believed that a close working relationship between the Practice Nurse and the PCW would help the target population of Māori, Pacifica and low income people to address and overcome their perceived barriers to healthcare which included: finance, transport, anxiety, cultural issues, communication, or lack of knowledge. Seven years later although the PCW project has been deemed a success in the Canterbury District Health Board annual reports (2013-14) and community and government agencies, including the Christchurch Resettlement Service (2012), many of the Pegasus Health General Practices have not utilised the project to its full extent, hence the need for this research. I was interested in finding out in the first instance if the model had changed and, if so why, and in the second instance if the promotional material currently distributed by Pegasus Health Primary Health Organisation reflected the daily practice of the PCW. A combination of methods were used including: surveys to the Pegasus Health General Practices, interviews with PCWs, interviews with managers of both the PCW host organisations and referring agencies to the PCW project. All the questions asked of all the participants in this research were focussed on their own perception of the role of the PCW. Results showed that the model has changed and although the publications were not reflecting the original intention of the project they did reflect the daily practice of the PCWs who are now struggling to meet much wider community expectations and needs. Key Results: Partnership Community Worker (PCW) interviews: Seventeen PCWs of the 19 employed were interviewed face to face. A number expressed interest in more culturally specific training and some are pursuing qualifications in social work; for many pay parity is an issue. In addition, many felt overwhelmed by the expectations around clients with mental health issues and housing issues now, post-earthquakes. Medical Practice surveys: Surveys were sent to eighty-two Pegasus Health medical practices and of these twenty five were completed. Results showed the full capacity of the PCW role was not clearly understood by all with many believing it was mostly a transport service. Those who did understand the full complexity of the role were very satisfied with the outcomes. PCW Host Community Manager Interviews: Of the ten out of twelve managers interviewed, some wished for more communication with Pegasus Health management because they felt aspects of both the PCW role and their own role as managers had become blurred over time. Referring organisations: Fifteen of the fifty referring community or government organisations participated. The overall satisfaction of the service was high and some acknowledged the continuing need for PCWs to be placed in communities where they were well known and trusted. Moreover results also showed that both the Canterbury earthquakes 2010-2011 and the amalgamation of Partnership Health PHO and Pegasus Health Charitable Limited in 2013 have contributed to the change of the model. Further future research may also be needed to examine the long term effects on the people of Canterbury involved in community work during the 2011-2014 years.
<b>Construction and Demolition (C&D) waste contributes to over 50% of New Zealand’s overall waste. Materials such as timber, plasterboard, and concrete make up 81% of the C&D waste that goes into landfills each year. Alongside this, more than 235 heritage-listed buildings have been demolished in Christchurch since the 2011 earthquakes. This research portfolio aims to find a solution to decrease C&D waste produced by demolishing heritage buildings.</b> With the recent announcement of The Cathedral of the Blessed Sacrament’s demolition, this will be another building added to the list of lost heritage in Christchurch. This research portfolio aims to bridge the relationship between heritage and waste through the recycling and reuse of the demolished materials, exploring the idea that history and heritage are preserved through building material reuse. This research portfolio mainly focuses on reducing construction and demolition waste in New Zealand, using the design of a new Catholic Cathedral as a vessel. This thesis will challenge how the construction and design industry deals with the demolition of heritage buildings and their contribution to New Zealand’s waste. It aims to explore the idea of building material reuse not only to reduce waste but also to retain the history and heritage of the demolished building within the materials.
Saltwater Forest is a Dacrydium cupressinum-dominated lowland forest covering 9000 ha in south Westland, South Island, New Zealand. Four thousand hectares is managed for sustainable production of indigenous timber. The aim of this study was to provide an integrated analysis of soils, soil-landform relationships, and soil-vegetation relationships at broad and detailed scales. The broad scale understandings provide a framework in which existing or future studies can be placed and the detailed studies elucidate sources of soil and forest variability. Glacial landforms dominate. They include late Pleistocene lateral, terminal and ablation moraines, and outwash aggradation and degradation terraces. Deposits and landforms from six glacial advances have been recognised ranging from latest Last (Otira) Glaciation to Penultimate (Waimea) Glaciation. The absolute ages of landforms were established by analysis of the thickness and soil stratigraphy of loess coverbeds, augmented with radiocarbon dating and phytolith and pollen analysis. In the prevailing high rainfall of Westland soil formation is rapid. The rate of loess accretion in Saltwater Forest (ca. 30 mm ka⁻¹) has been low enough that soil formation and loess accretion took place contemporaneously. Soils formed in this manner are known as upbuilding soils. The significant difference between upbuilding pedogenesis and pedogenesis in a topdown sense into an existing sediment body is that each subsoil increment of an upbuilding soil has experienced processes of all horizons above. In Saltwater Forest subsoils of upbuilding soils are strongly altered because they have experienced the extremely acid environment of the soil surface at some earlier time. Some soil chronosequence studies in Westland have included upbuilding soils formed in loess as the older members of the sequence. Rates and types of processes inferred from these soils should be reviewed because upbuilding is a different pedogenic pathway to topdown pedogenesis. Landform age and morphology were used as a primary stratification for a study of the soil pattern and nature of soil variability in the 4000 ha production area of Saltwater Forest. The age of landforms (> 14 ka) and rapid soil formation mean that soils are uniformly strongly weathered and leached. Soils include Humic Organic Soils, Perch-gley Podzols, Acid Gley Soils, Allophanic Brown Soils, and Orthic or Pan Podzols. The major influence on the nature of soils is site hydrology which is determined by macroscale features of landforms (slope, relief, drainage density), mesoscale effects related to position on landforms, and microscale influences determined by microtopography and individual tree effects. Much of the soil variability arises at microscales so that it is not possible to map areas of uniform soils at practical map scales. The distribution of soil variability across spatial scales, in relation to the intensity of forest management, dictates that it is most appropriate to map soil complexes with boundaries coinciding with landforms. Disturbance of canopy trees is an important agent in forest dynamics. The frequency of forest disturbance in the production area of Saltwater Forest varies in a systematic way among landforms in accord with changes in abundance of different soils. The frequency of forest turnover is highest on landforms with the greatest abundance of extremely poorly-drained Organic Soils. As the abundance of better-drained soils increases the frequency of forest turnover declines. Changes in turnover frequency are reflected in the mean size and density of canopy trees (Dacrydium cupressinum) among landforms. Terrace and ablation moraine landforms with the greatest abundance of extremely poorly-drained soils have on average the smallest trees growing most densely. The steep lateral moraines, characterised by well drained soils, have fewer, larger trees. The changes manifested at the landform scale are an integration of processes operating over much shorter range as a result of short-range soil variability. The systematic changes in forest structure and turnover frequency among landforms and soils have important implications for sustainable forest management.
A number of field testing techniques, such as standard penetration test (SPT), cone penetration test (CPT), and Swedish weight sounding (SWS), are popularly used for in-situ characterisation. The screw driving sounding (SDS) method, which has been recently developed in Japan, is an improved version of the SWS technique and measures more parameters, including the required torque, load, speed of penetration and rod friction; these provide more robust way of characterising soil stratigraphy. It is a cost-efficient technique which uses a machine-driven and portable device, making it ideal for testing in small-scale and confined areas. Moreover, with a testing depth of up to 10-15m, it is suitable for liquefaction assessment. Thus, the SDS method has great potential as an in-situ testing method for geotechnical site characterisation, especially for residential house construction. In this paper, the results of SDS tests performed at a variety of sites in New Zealand are presented. The soil database was employed to develop a soil classification chart based on SDS-derived parameters. Moreover, using the data obtained following the 2010-2011 Christchurch Earthquake Se-quence, a methodology was established for liquefaction potential evaluation using SDS data. http://www.isc5.com.au/wp-content/uploads/2016/09/1345-2-ORENSE.pdf
Soil-structure interaction (SSI) has been widely studied during the last decades. The influence of the properties of the ground motion, the structure and the soil have been addressed. However, most of the studies in this field consider a stand-alone structure. This assumption is rarely justifiable in dense urban areas where structures are built close to one another. The dynamic interaction between adjacent structures has been studied since the early 1970s, mainly using numerical and analytical models. Even though the early works in this field have significantly contributed to understanding this problem, they commonly consider important simplifications such as assuming a linear behaviour of the structure and the soil. Some experimental works addressing adjacent structures have recently been conducted using geotechnical centrifuges and 1g shake tables. However, further research is needed to enhance the understanding of this complex phenomenon. A particular case of SSI is that of structures founded in fine loose saturated sandy soil. An iconic example was the devastating effects of liquefaction in Christchurch, New Zealand, during the Canterbury earthquake in 2011. In the case of adjacent structures on liquefiable soil, the experimental evidence is even scarcer. The present work addresses the dynamic interaction between adjacent structures by performing multiple experimental studies. The work starts with two-adjacent structures on a small soil container to expose the basics of the problem. Later, results from tests considering a more significant number of structures on a big laminar box filled with sand are presented. Finally, the response of adjacent structures on saturated sandy soil is addressed using a geotechnical centrifuge and a large 1g shake table. This research shows that the acceleration, lateral displacement, foundation rocking, damping ratio, and fundamental frequency of the structure of focus are considerably affected by the presence of neighbouring buildings. In general, adjacent buildings reduced the dynamic response of the structure of focus on dry sand. However, the acceleration was amplified when the structures had a similar fundamental frequency. In the case of structures on saturated sand, the presence of adjacent structures reduced the liquefaction potential. Neighbouring structures on saturated sand also presented larger rotation of the footing and lateral displacement of the top mass than that of the stand-alone case.
The context of this study is the increasing need for public transport as issues over high private vehicle usage are becoming increasingly obvious. Public transport services need to compete with private transport to improve patronage, and issues with reliability need to be addressed. Bus bunching affects reliability through disruptions to the scheduled headways. The purpose of this study was to collect and analyse data to compare how travel time and dwell time vary, to explore the variation of key variables, and to better understand the sources of these variations. The Orbiter bus service in Christchurch was used as a case study, as it is particularly vulnerable to bus bunching. The dwell time was found to be more variable than travel time. It appeared the Canterbury earthquake had significantly reduced the average speeds for the Orbiter service. In 1964, Newell and Potts described a basic bus bunching theory, which was used as the basis for an Excel bus bunching model. This model allows input variables to vary stochastically. Random values were generated from four specified distributions derived from manually collected data, allowing variance across all bus platforms and buses. However the complexity resulted in stability and difficulty in achieving convergence, so the model was run in single Monte Carlo simulations. The outputs were realistic and showed a higher degree of bunching behaviour than previous models. The model demonstrated bunching phenomena that had not been observed in previous models, including spontaneously un-pairing, overtaking of buses delayed at platforms, and odd-numbered bunches of three buses. Furthermore, the study identified areas of further research for data collection and model development.
Study region: Christchurch, New Zealand. Study focus: Low-lying coastal cities worldwide are vulnerable to shallow groundwater salinization caused by saltwater intrusion and anthropogenic activities. Shallow groundwater salinization can have cascading negative impacts on municipal assets, but this is rarely considered compared to impacts of salinization on water supply. Here, shallow groundwater salinity was sampled at high spatial resolution (1.3 piezometer/km2 ), then mapped and spatially interpolated. This was possible due to a uniquely extensive set of shallow piezometers installed in response to the 2010–11 Canterbury Earthquake Sequence to assess liquefaction risk. The municipal assets located within the brackish groundwater areas were highlighted. New hydrological insights for the region: Brackish groundwater areas were centred on a spit of coastal sand dunes and inside the meander of a tidal river with poorly drained soils. The municipal assets located within these areas include: (i) wastewater and stormwater pipes constructed from steel-reinforced concrete, which, if damaged, are vulnerable to premature failure when exposed to chloride underwater, and (ii) 41 parks and reserves totalling 236 ha, within which salt-intolerant groundwater-dependent species are at risk. This research highlights the importance of determining areas of saline shallow groundwater in low-lying coastal urban settings and the co-located municipal assets to allow the prioritisation of sites for future monitoring and management.
There is a growing body of research into the effects of micronutrients on human mental health. There is evidence that multi-ingredient formulas are beneficial especially in relation to serious mental health disorders such as mood and anxiety disorders, attention-deficit hyperactivity disorder and obsessive-compulsive disorders. However there is almost no scientific research which looks at the effects of these formulas in an animal population. Therefore the aim of this study was to investigate the effects of a micronutrient formula, EMPowerplus, on anxiety behaviour in rats, and whether there is a relationship between dose and anxiolytic effect. In order to investigate this 40 male and 40 female rats received a diet consisting of either 0%, 1.25%, 2.5% or 5% EMP+ from when they were weaned (post natal day 30) until the end of testing 141 days later. Animals were tested in a Y maze, a light-dark emergence box and an open field at mid-adulthood (PND 136-138) and late adulthood (PND 186-188). Results found that animals receiving the 5% supplemented diet occupied the centre squares the most, occupied the corner squares the least and ambulated the most in the open field compared to the other experimental groups and control groups. No significant differences were found in the Y maze or Light-dark box. Animals were found to display more anxiety-like behaviour at time 2 than at time 1 regardless of receiving a supplemented diet or not. Overall a higher dose of EMP+ was associated with the greatest reduction in anxiety related behaviour. Due to the impact of the September 4th, 2010 Canterbury Earthquake caution should be taken when interpreting these results.
The Canterbury Earthquakes of 2010 and 2011 and subsequent re-organisation and rebuilding of schools in the region is initiating a rapid transitioning from traditional classrooms and individual teaching to flexible learning spaces (FLS’s) and co-teaching. This transition is driven by the Ministry of Education property division who have specific guidelines for designing new schools, re-builds and the five and ten year property plan requirements. Boards of Trustees, school leaders and teachers are faced with the challenge of reconceptualising teaching and learning from private autonomous learning environments to co-teaching in Flexible Learning Spaces provisioned for 50 to 180 children and two to six teachers in a single space. This process involves risks and opportunities especially for teachers and children. This research project investigates the key components necessary to create effective co-teaching relationships and environments. It explores the lessons learnt from the 1970’s open plan era and the views of 40 experienced practitioners and leaders with two or more years’ experience working in collaborative teaching and learning environments in sixteen New Zealand and Australian schools. The research also considers teacher collaboration and co-teaching as evidenced in literature. The findings lead to the identification of eight key components required to create effective collaborative teaching and learning environments which are discussed using three themes of student centeredness, effective pedagogy and collaboration. Six key recommendations are provided to support the effective co-teaching in a flexible learning space: 1. Situate learners at the centre 2. Develop shared understanding about effective pedagogy in a FLS 3. Develop skills of collaboration 4. Implement specific co-teaching strategies 5. Analyse the impact of co-teaching strategies 6. Strategically prepare for change and the future
Post-traumatic stress symptoms are a common reaction to experiencing a traumatic event such as a natural disaster. Young children may be at an increased risk for such mental health problems as these catastrophic events may coincide with developmentally sensitive periods of development. Treatments currently recommended for children with post-traumatic stress symptoms insufficiently acknowledge the role of neurobiological stress related systems responsible for these symptoms. As such, alternative approaches to the treatment of posttraumatic symptoms have been explored, with nature-based interventions offering a potential alternative based on two different theories that uphold the stress reducing benefits of natural environments. To date, there are a limited number of experimental studies that have explored the use of nature-based interventions with children, and no known research that has used a simulated nature experience with child participants. The purpose of this study was to investigate the effects of a simulated nature experience on the physiological and behavioural responses of children with post-traumatic stress symptoms that experienced the Christchurch earthquakes. A single-case research design with repeated measures of heart rate and teacherreported behaviour was gathered across a 20-day period. Heart rate data was collected before and after participants watched a 10-minute nature video, while data from a teacher rating scale provided information about the participants’ behaviours in the 30-minute period after they watched the nature video. Comparisons made to data collected during two different baseline phases indicated that the nature video intervention had no recognisable effects on the participants’ physiological and behavioural stress responses. Limitations to the current study are discussed as possible reasons for the incompatibility between the current study’s results and the findings from previous research. Suggestions are made for any future replications of the study.
Disaster recovery involves the restoration, repair and rejuvenation of both hard and soft infrastructure. In this report we present observationsfrom seven case studies of collaborative planning from post-earthquake Canterbury, each of which was selected as a means of better understanding ‘soft infrastructure for hard times’. Though our investigation is located within a disaster recovery context, we argue that the lessons learned are widely applicable. Our seven case studies highlighted that the nature of the planning process or journey is as important as the planning objective or destination. A focus on the journey can promote positive outcomes in and of itself through building enduring relationships, fostering diverse leaders, developing new skills and capabilities, and supporting translation and navigation. Collaborative planning depends as much upon emotional intelligence as it does technical competence, and we argue that having a collaborative attitude is more important than following prescriptive collaborative planning formulae. Being present and allowing plenty of time are also key. Although deliberation is often seen as an improvement on technocratic and expertdominated decision-making models, we suggest that the focus in the academic literature on communicative rationality and discursive democracy has led us to overlook other more active forms of planning that occur in various sites and settings. Instead, we offer an expanded understanding of what planning is, where it happens and who is involved. We also suggest more attention be given to values, particularly in terms of their role as a compass for navigating the terrain of decision-making in the collaborative planning process. We conclude with a revised model of a (collaborative) decision-making cycle that we suggest may be more appropriate when (re)building better homes, towns and cities.
The affect that the Christchurch Earthquake Sequence(CES) had on Christchurch residents was severe, and the consequences are still being felt today. The Ōtākaro Avon River Corridor (OARC) was particularly impacted, a geographic zone that had over 7,000 homes which needed to be vacated and demolished. The CES demonstrated how disastrous a natural hazard can be on unprepared communities. With the increasing volatility of climate change being felt around the world, considering ways in which communities can reduce their vulnerabilities to natural hazards is vital. This research explores how communities can reduce their vulnerabilities to natural hazards by becoming more adaptable, and in particular the extent to which tiny homes could facilitate the development of adaptive communities. In doing so, three main themes were explored throughout this research: (1) tiny homes, (2) environmental adaptation and (3) community adaptability. To ensure that it is relevant and provides real value to the local community, the research draws upon the local case study of the Riverlution Tiny House Village(RTHV), an innovative community approach to adaptable, affordable, low-impact, sustainable living on margins of land which are no longer suitable for permanent housing. The main findings of the research are that Christchurch is at risk of climate change and natural hazards and it is therefore important to consider ways in which communities can stay intact and connected while adapting to the risks they face. Tiny homes provide an effective way of doing so, as they represent a tangible way that people can take adaptation into their own hands while maintaining a high-quality lifestyle.
This research attempts to understand whether community resilience and perceived livability are influenced by housing typologies in Christchurch, New Zealand. Using recent resident surveys undertaken by the Christchurch City Council, two indexes were created to reflect livability and community resilience. Indicators used to create both indexes included (1) enjoyment living in neighbourhood (2) satisfaction with local facilities (3) safety walking and (4) safety using public transport, (5) sense of community (6) neighbour interactions, (7) home ownership and (8) civic engagement. Scores were attributed to 72 neighbourhoods across Christchurch –and each neighbourhood was classified in one of the following housing typologies; (1) earthquake damaged, (2) relatively undamaged, (3) medium density and (4) greenfield developments. Spatial analysis of index scores and housing classifications suggest housing typologies do influence resident’s perceived livability and community bonds to an extent. It was found that deprivation also had a considerable influence on these indexes as well as residential stability. These additional influences help explain why neighbourhoods within the same housing classification differ in their index scores. Based on these results, several recommendations have been made to the CCC in relation to future research, urban development strategies and suburb specific renewal projects. Of chief importance, medium density neighbourhoods and deprived neighbourhoods require conscious efforts to foster community resilience. Results indicate that community resilience might be more important than livability in having a positive influence on the lived experience of residents. While thoughtful design and planning are important, this research suggests geospatial research tools could enable better community engagement outcomes and planning outcomes, and this could be interwoven into proactive and inclusive planning approaches like placemaking.
During the recent devastating earthquakes in Christchurch, many residential houses were damaged due to widespread liquefaction of the ground. In-situ testing is widely used as a convenient method for evaluating liquefaction potential of soils. Cone penetration test (CPT) and standard penetration test (SPT) are the two popular in situ tests which are widely used in New Zealand for site characterization. The Screw Driving Sounding (SDS) method is a relatively new operating system developed in Japan consisting of a machine that drills a rod into the ground by applying torque at seven steps of axial loading. This machine can continuously measure the required torque, load, speed of penetration and rod friction during the test, and therefore can give a clear overview of the soil profile along the depth of penetration. In this paper, based on a number of SDS tests conducted in Christchurch, a correlation was developed between tip resistance of CPT test and SDS parameters for layers consisting of different fines contents. Moreover, using the obtained correlation, a chart was proposed which relates the cyclic resistance ratio to the appropriate SDS parameter. Using the proposed chart, liquefaction potential of soil can be estimated directly using SDS data. As SDS method is simpler, faster and more economical test than CPT and SPT, it can be a reliable alternative in-situ test for soil characterization, especially in residential house constructions.
When the devastating 6.3 magnitude earthquake hit Christchurch, Aotearoa New Zealand, at 12.51pm on 22nd February 2011, the psychological and physical landscape was irrevocably changed. In the days and weeks following the disaster communities were isolated due to failed infrastructure, continuing aftershocks and the extensive search and rescue effort which focussed resources on the central business district. In such moments the resilience of a community is truly tested. This research discusses the role of grassroots community groups in facilitating community resilience during the Christchurch 2010/11 earthquakes and the role of place in doing so. I argue that place specific strategies for urban resilience need to be enacted from a grassroots level while being supported by broader policies and agencies. Using a case study of Project Lyttelton – a group aspiring towards a resilient sustainable future who were caught at the epicentre of the February earthquake – I demonstrate the role of a community group in creating resilience through self-organised place specific action during a disaster. The group provided emotional care, basic facilities and rebuilding assistance to the residents of Lyttelton, proving to be an invaluable asset. These actions are closely linked to the characteristics of social support and social learning that have been identified as important to socio-ecological resilience. In addition this research will seek to understand and explore the nuances of place and identity and its role in shaping resilience to such dis-placing events. Drawing on community narratives of the displacement of place identity, the potential for a progressive sense of place as instigated by local groups will be investigated as an avenue for adaptation by communities at risk of disaster and place destabilisation.
Wellington is located on a fault line which will inevitably, one day be impacted by a big earthquake. Due to where this fault line geographically sits, the central city and southern suburbs may be cut off from the rest of the region, effectively making these areas an ‘island’. This issue has absorbed a lot of attention, in particular at a large scale by many different fields: civil engineering, architecture, infrastructure planning & design, policymaking. Due to heightened awareness, and evolved school of practice, contemporary landscape architects deal with post-disaster design – Christchurch, NZ has seen this. A number of landscape architects work with nature, following increased application of ecological urbanism, and natural systems thinking, most notably at larger scales. To create parks that are designed to flood, or implement projects to protect shorelines. A form of resilience less often considered is how design for the small scale - people’s 1:1 relationship with their immediate context in exterior space - can be influential in forming a resilient response to the catastrophe of a major earthquake. This thesis intends to provide a response to address the shift of scales, as a paradigm for preparation and recovery. After a large-scale earthquake, state and civic policies and agencies may or subsequentially not go into action. The most important thinking and acting will be what happens in the minds, and the immediate needs, of each and every person; and how they act communally. This is considered in general social terms in state and civic education programmes of civil defence, for example, but much less considered in how the physical design of the actual spaces we inhabit day-to-day can educate us to be mentally prepared to help each other survive a catastrophe. Specifically, the identification of design of typologies can provide these educative functions. Typology inherently a physical form or manipulation of a generic and substantial prototype applicable in contexts is something that exists in the mind. Working with the physical and social appearance and experience of typologies can also/will change people’s minds. Socially, and economically driven, the community-building power of community gardening is well-proven and documented, and a noticeably large part of contemporary landscape architecture. The designs of this thesis will focus on community gardening specifically to form typologies of resilience preparation and response to disaster. The foundation will remain at the small scale of the local community. The specific question this thesis poses: Can we design local typologies in landscape architecture to integrate community gardens, with public space by preparing for and acting as recovery from a disaster?
The overarching goal of this dissertation is to improve predictive capabilities of geotechnical seismic site response analyses by incorporating additional salient physical phenomena that influence site effects. Specifically, multidimensional wave-propagation effects that are neglected in conventional 1D site response analyses are incorporated by: (1) combining results of 3D regional-scale simulations with 1D nonlinear wave-propagation site response analysis, and (2) modelling soil heterogeneity in 2D site response analyses using spatially-correlated random fields to perturb soil properties. A method to combine results from 3D hybrid physics-based ground motion simulations with site-specific nonlinear site response analyses was developed. The 3D simulations capture 3D ground motion phenomena on a regional scale, while the 1D nonlinear site response, which is informed by detailed site-specific soil characterization data, can capture site effects more rigorously. Simulations of 11 moderate-to-large earthquakes from the 2010-2011 Canterbury Earthquake Sequence (CES) at 20 strong motion stations (SMS) were used to validate simulations with observed ground motions. The predictions were compared to those from an empirically-based ground motion model (GMM), and from 3D simulations with simplified VS30- based site effects modelling. By comparing all predictions to observations at seismic recording stations, it was found that the 3D physics-based simulations can predict ground motions with comparable bias and uncertainty as the GMM, albeit, with significantly lower bias at long periods. Additionally, the explicit modelling of nonlinear site-response improves predictions significantly compared to the simplified VS30-based approach for soft-soil or atypical sites that exhibit exceptionally strong site effects. A method to account for the spatial variability of soils and wave scattering in 2D site response analyses was developed and validated against a database of vertical array sites in California. The inputs required to run the 2D analyses are nominally the same as those required for 1D analyses (except for spatial correlation parameters), enabling easier adoption in practice. The first step was to create the platform and workflow, and to perform a sensitivity study involving 5,400 2D model realizations to investigate the influence of random field input parameters on wave scattering and site response. Boundary conditions were carefully assessed to understand their effect on the modelled response and select appropriate assumptions for use on a 2D model with lateral heterogeneities. Multiple ground-motion intensity measures (IMs) were analyzed to quantify the influence from random field input parameters and boundary conditions. It was found that this method is capable of scattering seismic waves and creating spatially-varying ground motions at the ground surface. The redistribution of ground-motion energy across wider frequency bands, and the scattering attenuation of high-frequency waves in 2D analyses, resemble features observed in empirical transfer functions (ETFs) computed in other studies. The developed 2D method was subsequently extended to more complicated multi-layer soil profiles and applied to a database of 21 vertical array sites in California to test its appropriate- ness for future predictions. Again, different boundary condition and input motion assumptions were explored to extend the method to the in-situ conditions of a vertical array (with a sensor embedded in the soil). ETFs were compared to theoretical transfer functions (TTFs) from conventional 1D analyses and 2D analyses with heterogeneity. Residuals of transfer-function- based IMs, and IMs of surface ground motions, were also used as validation metrics. The spatial variability of transfer-function-based IMs was estimated from 2D models and compared to the event-to-event variability from ETFs. This method was found capable of significantly improving predictions of median ETF amplification factors, especially for sites that display higher event-to-event variability. For sites that are well represented by 1D methods, the 2D approach can underpredict amplification factors at higher modes, suggesting that the level of heterogeneity may be over-represented by the 2D random field models used in this study.
The Canterbury Earthquake Sequence (CES) of 2010-2011 produced large seismic moments up to Mw 7.1. These large, near-to-surface (<15 km) ruptures triggered >6,000 rockfall boulders on the Port Hills of Christchurch, many of which impacted houses and affected the livelihoods of people within the impacted area. From these disastrous and unpredicted natural events a need arose to be able to assess the areas affected by rockfall events in the future, where it is known that a rockfall is possible from a specific source outcrop but the potential boulder runout and dynamics are not understood. The distribution of rockfall deposits is largely constrained by the physical properties and processes of the boulder and its motion such as block density, shape and size, block velocity, bounce height, impact and rebound angle, as well as the properties of the substrate. Numerical rockfall models go some way to accounting for all the complex factors in an algorithm, commonly parameterised in a user interface where site-specific effects can be calibrated. Calibration of these algorithms requires thorough field checks and often experimental practises. The purpose of this project, which began immediately following the most destructive rupture of the CES (February 22, 2011), is to collate data to characterise boulder falls, and to use this information, supplemented by a set of anthropogenic boulder fall data, to perform an in-depth calibration of the three-dimensional numerical rockfall model RAMMS::Rockfall. The thesis covers the following topics: • Use of field data to calibrate RAMMS. Boulder impact trails in the loess-colluvium soils at Rapaki Bay have been used to estimate ranges of boulder velocities and bounce heights. RAMMS results replicate field data closely; it is concluded that the model is appropriate for analysing the earthquake-triggered boulder trails at Rapaki Bay, and that it can be usefully applied to rockfall trajectory and hazard assessment at this and similar sites elsewhere. • Detailed analysis of dynamic rockfall processes, interpreted from recorded boulder rolling experiments, and compared to RAMMS simulated results at the same site. Recorded rotational and translational velocities of a particular boulder show that the boulder behaves logically and dynamically on impact with different substrate types. Simulations show that seasonal changes in soil moisture alter rockfall dynamics and runout predictions within RAMMS, and adjustments are made to the calibration to reflect this; suggesting that in hazard analysis a rockfall model should be calibrated to dry rather than wet soil conditions to anticipate the most serious outcome. • Verifying the model calibration for a separate site on the Port Hills. The results of the RAMMS simulations show the effectiveness of calibration against a real data set, as well as the effectiveness of vegetation as a rockfall barrier/retardant. The results of simulations are compared using hazard maps, where the maximum runouts match well the mapped CES fallen boulder maximum runouts. The results of the simulations in terms of frequency distribution of deposit locations on the slope are also compared with those of the CES data, using the shadow angle tool to apportion slope zones. These results also replicate real field data well. Results show that a maximum runout envelope can be mapped, as well as frequency distribution of deposited boulders for hazard (and thus risk) analysis purposes. The accuracy of the rockfall runout envelope and frequency distribution can be improved by comprehensive vegetation and substrate mapping. The topics above define the scope of the project, limiting the focus to rockfall processes on the Port Hills, and implications for model calibration for the wider scientific community. The results provide a useful rockfall analysis methodology with a defensible and replicable calibration process, that has the potential to be applied to other lithologies and substrates. Its applications include a method of analysis for the selection and positioning of rockfall countermeasure design; site safety assessment for scaling and demolition works; and risk analysis and land planning for future construction in Christchurch.
This research provides an investigation into the impact on the North Island freight infrastructure, in the event of a disruption of the Ports of Auckland (POAL). This research is important to New Zealand, especially having experienced the Canterbury earthquake disaster in 2010/2011 and the current 2012 industrial action plaguing the POAL. New Zealand is a net exporter of a combination of manufactured high value goods, commodity products and raw materials. New Zealand’s main challenge lies in the fact of its geographical distances to major markets. Currently New Zealand handles approximately 2 million containers per annum, with a minimum of ~40% of those containers being shipped through POAL. It needs to be highlighted that POAL is classified as an import port in comparison to Port of Tauranga (POT) that has traditionally had an export focus. This last fact is of great importance, as in a case of a disruption of the POAL, any import consigned to the Auckland and northern region will need to be redirected through POT in a quick and efficient way to reach Auckland and the northern regions. This may mean a major impact on existing infrastructure and supply chain systems that are currently in place. This study is critical as an element of risk management, looking at how to mitigate the risk to the greater Auckland region. With the new Super City taking hold, the POAL is a fundamental link in the supply chain to the largest metropolitan area within New Zealand.
An emerging water crisis is on the horizon and is poised to converge with several other impending problems in the 21st century. Future uncertainties such as climate change, peak oil and peak water are shifting the international focus from a business as usual approach to an emphasis on sustainable and resilient strategies that better meet these challenges. Cities are being reimagined in new ways that take a multidisciplinary approach, decompartmentalising functions and exploring ways in which urban systems can share resources and operate more like natural organisms. This study tested the landscape design implications of wastewater wetlands in the urban environment and evaluated their contribution to environmental sustainability, urban resilience and social development. Black and grey water streams were the central focus of this study and two types of wastewater wetlands, tidal flow (staged planning) and horizontal subsurface flow wetlands were tested through design investigations in the earthquake-affected city of Christchurch, New Zealand. These investigations found that the large area requirements of wastewater wetlands can be mitigated through landscape designs that enhance a matrix of open spaces and corridors in the city. Wastewater wetlands when combined with other urban and rural services such as food production, energy generation and irrigation can aid in making communities more resilient. Landscape theory suggests that the design of wastewater wetlands must meet cultural thresholds of beauty and that the inclusion of waste and ecologies in creatively designed landscapes can deepen our emotional connection to nature and ourselves.
The city of Christchurch, New Zealand, incurred significant damage due to a series of earthquakes in 2010 and 2011. The city had, by the late 2010s, regained economic and social normalcy after a sustained period of rebuilding and economic recovery. Through the concerted rebuilding effort, a modern central business district (CBD) with redesigned infrastructure and amenities was developed. The Christchurch rebuild was underpinned by a commitment of urban planners to an open and connected city, including the use of innovative technologies to gather, use and share data. As was the case elsewhere, the COVID-19 pandemic brought about significant disruptions to social and economic life in Christchurch. Border closures, lockdowns, trading limitations and other restrictions on movement led to changes in traditional consumer behaviors and affected the retail sector’s resilience. In this study, we used CBD pedestrian traffic data gathered from various locations to predict changes in retail spending and identify recovery implications through the lens of retail resilience. We found that the COVID-19 pandemic and its related lockdowns have driven a substantive change in the behavioral patterns of city users. The implications for resilient retail, sustainable policy and further research are explored.
Memorial design in the West has been explored in depth (Stevens and Franck, 2016; Williams, 2007), and for landscape architects it presents opportunities and challenges. However, there is little in the English language literature about memorial design in China. How have Chinese designers responded to the commemorative settings of war and disaster? This study will adopt the method of case study to analyse two of the most representative memorials in China: Nanjing Massacre Memorial Hall (war) and Tangshan Earthquake Memorial Hall (disaster). Both landscapes have undergone three or four renovations and extensions in the last four decades, demonstrating the practical effects of the Chinese landscape theory. These examples of responses to trauma through memorial landscape interventions are testimonies to the witnesses, victims, abusers, ordinary people, youth and the place where the tragedy took place. This study will explore the reconstruction and expansion of the two memorials under the background of China's policies on memorial landscapes in different periods, as well as their functions of each stage. The research will examine how existing Chinese memorial theories exhibit unique responses at different times in response to the sadness and needs experienced by different users. Key Words:memorial landscape; memorial language; victims; descriptive; architecture; experence; disaster; memorial hall; landscape development; Chinese memorial; war.
On the 22nd of February, 2011 the city of Christchurch, New Zealand was crippled by a colossal earthquake. 185 people were killed, thousands injured and what remained was a city left in destruction and ruin. Thousands of Christchurch properties and buildings were left damaged beyond repair and the rich historical architecture of the Canterbury region had suffered irreparably. This research will conduct an investigation into whether the use of mixed reality can aid in liberating Christchurch’s rich architectural heritage when applied to the context of destructed buildings within Christchurch. The aim of this thesis is to formulate a narrative around the embodiment of mixed reality when subjected to the fragmentary historical architecture of Christchurch. Mixed reality will aspire to act as the defining ligature that holds the past, present and future of Christchurch’s architectural heritage intact as if it is all part of the same continuum. This thesis will focus on the design of a memorial museum within a heavily damaged historical trust registered building due to the Christchurch earthquake. It is important and relevant to conceive the idea of such a design as history is what makes everything we know. The memories of the past, the being of the now and the projection of the future is the basis and fundamental imperative in honouring the city and people of Christchurch. Using the technologies of Mixed Reality and the realm of its counter parts the memorial museum will be a definitive proposition of desire in providing a psychological and physical understanding towards a better Christchurch, for the people of Christchurch. This thesis serves to explore the renovation possibilities of the Canterbury provincial council building in its destructed state to produce a memorial museum for the Christchurch earthquake. The design seeks to mummify the building in its raw state that sets and develops the narrative through the spaces. The design intervention is kept at a required minimum and in doing so manifests a concentrated eloquence to the derelict space. The interior architecture unlocks the expression of history and time encompassed within a destructive and industrialised architectural dialogue. History is the inhabitant of the building, and using the physical and virtual worlds it can be set free. This thesis informs a design for a museum in central Christchurch that celebrates and informs the public on past, present and future heritage aspects of Christchurch city. Using mixed reality technologies the spatial layout inside will be a direct effect of the mixed reality used and the exploration of the physical and digital heritage aspects of Christchurch. The use of technology in today’s world is so prevalent that incorporating it into a memorial museum for Christchurch would not only be interesting and exploratory but also offer a sense of pushing forward and striving beyond for a newer, fresher Christchurch. The memorial museum will showcase a range of different exhibitions that formulate around the devastating Christchurch earthquake. Using mixed reality technologies these exhibitions will dictate the spaces inside dependant on their various applications of mixed reality as a technology for architecture. Research will include; what the people of Canterbury are most dear to in regards to Christchurch’s historical environment; the use of mixed reality to visualise digital heritage, and the combination of the physical and digital to serve as an architectural mediation between what was, what is and what there could be.
Topics - Katy Perry opened the ceremony in Los Angeles with a Japanese-themed performance of Unconditionally, dressed as a Geisha. Within minutes, fans and viewers were accusing her of racism. A citizens initiated referendum on the sale of state assets is in full swing. The referendum isn't binding on the Government, in fact the Government has already promised to ignore it. Newly published research shows that the Canterbury earthquakes were even more unusual than first thought, with such a sequence unlikely to occur anywhere else in the world. The research, published this week in Nature Geoscience, challenges the common assumption that the strength of the Earth's crust is constant.
This thesis investigates the relationship between the apocalyptic narrative and the postmodern novel. It explores and builds on Patricia Waugh‟s hypothesis in Practising Postmodernism: Reading Modernism (1992) which suggests that that the postmodern is characterised by an apocalyptic sense of crisis, and argues that there is in fact a strong relationship between the apocalyptic and the postmodern. It does so through an exploration of apocalyptic narratives and themes in five postmodern novels. It also draws on additional supporting material which includes literary and cultural theory and criticism, as well as historical theory. In using the novel as a medium through which to explore apocalyptic narratives, this thesis both assumes and affirms the novel‟s importance as a cultural artefact which reflects the concerns of the age in which it is written. I suggest that each of the novels discussed in this thesis demonstrates the close relationship between the apocalyptic and the postmodern through society‟s concern over the direction of history, the validity of meta-narratives, and other cultural phenomenon, such as war, the development of nuclear weaponry, and terrorism. Although the scope of this thesis is largely confined to the historical-cultural epoch known as postmodernity, it also draws on literature and cultural criticism from earlier periods so as to provide a more comprehensive framework for investigating apocalyptic ideas and their importance inside the postmodern novel. A number of modernist writers are therefore referred to or quoted throughout this thesis, as are other important thinkers from preceding periods whose ideas are especially pertinent. The present thesis was researched and written between March 2010 and August 2011 and is dedicated to all of those people who lost their lives in the apocalyptic events of the February 22nd Christchurch earthquake.
Worldwide, the numbers of people living with chronic conditions are rapidly on the rise. Chronic illnesses are enduring and often cannot be cured, requiring a strategy for long term management and intervention to prevent further exacerbation. Globally, there has been an increase in interventions using telecommunications technologies to aid patients in their home setting to manage chronic illnesses. Such interventions have often been delivered by nurses. The purpose of this research was to assess whether a particular intervention that had been successfully implemented in the United Kingdom could also be implemented in Canterbury. In particular, this research assessed the perspectives of Canterbury based practice nurses and district nurses. The findings suggest that a majority of both district and practice nurses did not view the service as compatible with their current work situation. Existing workload and concerns over funding of the proposed service were identified as potential barriers. However, the service was perceived as potentially beneficial for some, with the elderly based in rural areas, or patients with chronic mental health needs identified as more likely to benefit than others. Practice nurses expressed strong views on who should deliver such services. Given that it was identified that practice nurses already have in-depth knowledge of their patients’ health, while valuing the strong relationships established with their communities, it was suggested that patients would most benefit from locally based nurses to deliver any community based health services in the future. It was also found that teletriaging is currently widely used by practice nurses across Canterbury to meet a range of health needs, including chronic mental health needs. This suggests that the scope of teletriaging in community health and its potential and full implications are currently not well understood in New Zealand. Significant events, such as the Christchurch earthquakes indicate the potential role of teletriaging in addressing mental health issues, thereby reducing the chronic health burden in the community.
School travel is a major aspect of a young person’s everyday activity. The relationship between the built environment that youth experience on their way to and from school, influences a number of factors including their development, health and wellbeing. This is especially important in low income areas where the built environment is often poorer, but the need for it to be high quality and accessible is greater. This study focusses on the community of Aranui, a relatively low income suburb in Christchurch, New Zealand. It pays particular attention to Haeata Community Campus, a state school of just under 800 pupils from year one through to year thirteen (ages 5-18). The campus opened in 2017 following the closure of four local schools (three primary and one secondary), as part of the New Zealand Government’s Education Renewal scheme following the Christchurch earthquakes of 2010/11. Dedicated effort toward understanding the local built environment, and subsequent travel patterns has been argued to be insufficiently considered. The key focus of this research was to understand the importance of the local environment in encouraging active school travel. The present study combines geospatial analysis, quantitative survey software Maptionnaire, and statistical models to explore the features of the local environment that influence school travel behaviour. Key findings suggest that distance to school and parental control are the most significant predictors of active transport in the study sample. Almost 75% of students live within two kilometres of the school, yet less than 40% utilise active transport. Parental control may be the key contributing factor to the disproportionate private vehicle use. However, active school travel is acknowledged as a complex process that is the product of many individual, household, and local environment factors. To see increased active transport uptake, the local environment needs to be of greater quality. Meaning that the built environment should be improved to be youth friendly, with greater walkability and safe, accessible cycling infrastructure.
Over the last six years, Canterbury residents have lived through two major earthquakes and thousands of aftershocks, with such events negatively impacting psychological health. Research shows rates of post-traumatic stress symptoms in children have doubled post-quake, and a classroom containing children who are experiencing chronically high physiological arousal has been shown to be a stressful environment for teachers. Such stress therefore negatively impacts teachers’ ability to sleep well, meaning many Christchurch teachers may suffer from insomnia, a debilitating condition leading to psychological distress and often comorbid with other mental health conditions. The present research sought to investigate the use of a broadspectrum micronutrient formula called EMPowerplus (EMP+) for chronic insomnia in teachers. This study examined the effect of EMP+ over an 8-10 week period using a multiple-baseline design with placebo. Seventeen teachers were randomized to one of three baseline sequences where they completed a one week baseline period, before receiving five, nine, or 14 days, of placebo as well as 8-10 weeks of the micronutrient formula. After completion of the trial, a three-month follow up was conducted. All participants completed the trial, and results showed a statistically reliable and clinically significant decrease in insomnia severity (Cohen’s dav = - 1.37), on at least one or more aspects of the sleep diary, and on emotional exhaustion (Cohen’s dav = -1.08). EMP+ also statistically significantly reduced insomnia severity compared to placebo (Cohen’s dav = -0.66). Statistically significant reduction was not seen in stress, anxiety and depression scores as compared to placebo, and these levels were not generally clinically raised to begin with. Sixteen out of 17 participants were compliant, and side effects were generally mild and transitory. The current study provides evidence for the beneficial effect of micronutrient supplementation on chronic insomnia in Christchurch teachers working in a stressful environment. Future research incorporating measurement of nutritional intake and proinflammatory biomarkers, as well as conducting comparisons to other conventional treatments, is recommended.