Search

found 100456 results

Research papers, The University of Auckland Library

This article argues that teachers deserve more recognition for their roles as first responders in the immediate aftermath of a disaster and for the significant role they play in supporting students and their families through post-disaster recovery. The data are drawn from a larger study, 'Christchurch Schools Tell Their Earthquake Stories' funded by the United Nations Educational, Scientific and Cultural Organisation and the University of Auckland, in which schools were invited to record their earthquake stories for themselves and for historical archives. Data were gathered from five primary schools between 2012 and 2014. Methods concerned mainly semi-structured individual or group interviews and which were analysed thematically. The approach was sensitive, flexible and participatory with each school being able to choose its focus, participants and outcome. Participants from each school generally included the principal and a selection of teachers, students and parents. In this study, the data relating to the roles of teachers were separated out for closer analysis. The findings are presented as four themes: immediate response; returning to (new) normal; care and support; and long term effects.

Research papers, The University of Auckland Library

Churches are an important part of New Zealand's historical and architectural heritage. Various earthquakes around the world have highlighted the significant seismic vulnerability of religious buildings, with the extensive damage that occurred to stone and clay-brick unreinforced masonry churches after the 2010-2011 Canterbury earthquakes emphasising the necessity to better understand this structural type. Consequently, a country-wide inventory of unreinforced masonry churches is here identified. After a bibliographic and archival investigation, and a 10 000 km field trip, it is estimated that currently 297 unreinforced masonry churches are present throughout New Zealand, excluding 12 churches demolished in Christchurch because of heavy damage sustained during the Canterbury earthquake sequence. The compiled database includes general information about the buildings, their architectural features and structural characteristics, and any architectural and structural transformations that have occurred in the past. Statistics about the occurrence of each feature are provided and preliminary interpretations of their role on seismic vulnerability are discussed. The list of identified churches is reported in annexes, supporting their identification and providing their address.

Research papers, The University of Auckland Library

This thesis presents an assessment of historic seismic performance of the New Zealand stopbank network from the 1968 Inangahua earthquake through to the 2016 Kaikōura earthquake. An overview of the types of stopbanks and the main aspects of the design and construction of earthen stopbanks was presented. Stopbanks are structures that are widely used on the banks of rivers and other water bodies to protect against the impact of flood events. Earthen stopbanks are found to be the most used for such protection measures. Different stopbank damage or failure modes that may occur due to flooding or earthquake excitation were assessed with a focus on past earthquakes internationally, and examples of these damage and failure modes were presented. Stopbank damage and assessment reports were collated from available reconnaissance literature to develop the first geospatial database of stopbank damage observed in past earthquakes in New Zealand. Damage was observed in four earthquakes over the past 50 years, with a number of earthquakes resulting in no stopbank damage. The damage database therefore focussed on the Edgecumbe, Darfield, Christchurch and Kaikōura earthquakes. Cracking of the crest and liquefaction-induced settlement were the most common forms of damage observed. To understand the seismic demand on the stopbank network in past earthquakes, geospatial analyses were undertaken to approximate the peak ground acceleration (PGA) across the stopbank network for ten large earthquakes that have occurred in New Zealand over the past 50 years. The relationship between the demand, represented by the peak ground acceleration (PGA) and damage is discussed and key trends identified. Comparison of the seismic demand and the distribution of damage suggested that the seismic performance of the New Zealand stopbank network has been generally good across all events considered. Although a significant length of the stopbank networks were exposed to high levels of shaking in past events, the overall damage length was a small percentage of this. The key aspect controlling performance was the performance of the underlying foundation soils and the effect of this on the stopbank structure and stability.

Research Papers, Lincoln University

Nature has endowed New Zealand with unique geologic, climatic, and biotic conditions. Her volcanic cones and majestic Southern Alps and her verdant plains and rolling hills provide a landscape as rugged and beautiful as will be found anywhere. Her indigenous fauna and flora are often quite different from that of the rest of the world and consequently have been of widespread interest to biologists everywhere. Her geologic youth and structure and her island climate, in combination with the biological resources, have made a land which is ecologically on edge. These natural endowments along with the manner in which she has utilized her land, have given New Zealand some of the most spectacular and rapid erosion to be found. It is quite evident that geologic and climatic conditions combine to give unusually high rates of natural erosion. Present topographic features indicate the past occurrence of large-scale flooding as well. Prior to the arrival of the Maori, it is very likely that most of the land mass of New Zealand below present bush lines was covered with indigenous bush or forest. Forest fires of a catastrophic nature undoubtedly occurred as a result of lightning, and volcanic eruptions. The exposed soils left by these catastrophes contributed to natural deterioration. While vast areas of forest cover were destroyed, they probably were healed by nature with forest or with grass or herbaceous cover. Further, it is probable that large areas in the mountains were, as they are now, subject to landslides and slipping due to earthquakes and excessive local rainfall. Again, the healing process was probably rapid in most of such exposed areas.

Research papers, University of Canterbury Library

On 4 September 2010, a magnitude Mw 7.1 earthquake struck the Canterbury region on the South Island of New Zealand. The epicentre of the earthquake was located in the Darfield area about 40 km west of the city of Christchurch. Extensive damage occurred to unreinforced masonry buildings throughout the region during the mainshock and subsequent large aftershocks. Particularly extensive damage was inflicted to lifelines and residential houses due to widespread liquefaction and lateral spreading in areas close to major streams, rivers and wetlands throughout Christchurch and Kaiapoi. Despite the severe damage to infrastructure and residential houses, fortunately, no deaths occurred and only two injuries were reported in this earthquake. From an engineering viewpoint, one may argue that the most significant aspects of the 2010 Darfield Earthquake were geotechnical in nature, with liquefaction and lateral spreading being the principal culprits for the inflicted damage. Following the earthquake, a geotechnical reconnaissance was conducted over a period of six days (10–15 September 2010) by a team of geotechnical/earthquake engineers and geologists from New Zealand and USA (GEER team: Geo-engineering Extreme Event Reconnaissance). JGS (Japanese Geotechnical Society) members from Japan also participated in the reconnaissance team from 13 to 15 September 2010. The NZ, GEER and JGS members worked as one team and shared resources, information and logistics in order to conduct thorough and most efficient reconnaissance covering a large area over a very limited time period. This report summarises the key evidence and findings from the reconnaissance.

Research papers, University of Canterbury Library

Base isolation is an incredibly effective technology used in seismic regions throughout the world to limit structural damage and maintain building function, even after severe earthquakes. However, it has so far been underutilised in light-frame wood construction due to perceived cost issues and technical problems, such as a susceptibility to movement under strong wind loads. Light-frame wood buildings make up the majority of residential construction in New Zealand and sustained significant damage during the 2010-2011 Canterbury earthquake sequence, yet the design philosophy has remained largely unchanged for years due to proven life-safety performance. Recently however, with the advent of performance based earthquake engineering, there has been a renewed focus on performance factors such as monetary loss that has driven a want for higher performing residential buildings. This research develops a low-cost approach for the base isolation of light-frame wood buildings using a flat-sliding friction base isolation system, which addresses the perceived cost and technical issues, and verifies the seismic performance through physical testing on the shake table at the University of Canterbury. Results demonstrate excellent seismic performance with no structural damage reported despite a large number of high-intensity earthquake simulations. Numerical models are subsequently developed and calibrated to New Zealand light-frame wood building construction approaches using state-of-the-art wood modelling software, Timber3D. The model is used to accurately predict both superstructure drift and acceleration demand parameters of fixed-base testing undertaken after the base isolation testing programme is completed. The model development allows detailed cost analyses to be undertaken within the performance based earthquake engineering framework that highlights the monetary benefits of using base isolation. Cost assessments indicate the base isolation system is only 6.4% more compared to the traditional fixed-base system. Finally, a design procedure is recommended for base isolated light-frame wood buildings that is founded on the displacement based design (DBD) approach used in the United States and New Zealand. Nonlinear analyses are used to verify the DBD method which indicate its suitability.

Videos, UC QuakeStudies

A video about the New Zealand Police and the New Zealand Army working in Christchurch to keep the city safe following the 4 September 2010 earthquake. The video includes an interview with Senior Sergeant Phillip Dean, Captain Mark Rutledge, Lance Corporal Aaron Tuhi, Lieutenant Dennis Petre, and Second Lieutenant David Pedrosa-Durie. It also includes footage of the New Zealand Military preparing meals at Burnham Camp.