Search

found 1146 results

Images, Alexander Turnbull Library

Text at top left reads 'Where earthquakes come from' Below God and the devil stand on either side of a gaming board which shows a map of New Zealand placed on a numbered board. The croupier spins the numbers and says 'Faites vos jeux' while the devil furiously shakes the dice and God makes a peace sign and thinks 'Next move'..' Context - the apparently random nature of when and where earthquakes strike. Because of the Christchurch earthquakes of 4 September 2010 and 22 February 2011 many New Zealanders have been asking for more certainty about earthquake prediction which scientists cannot yet give them. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

A tall building sways and groans, creaks and rumbles during an earthquake. Someone from inside at the top of the building says 'Earthquake? No... This is an extreme adventure activity that you'll be billed for later!' Context - The earthquakes in Christchurch and the Canterbury region. The three major ones were on 4th September 2010, 22 February 2011 and 13 June 2011 and there have been hundreds of aftershocks. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

A man representing 'EQC' (Earthquake Commission) talks to a couple outside their collapsed house. He says 'Unfortunately, this is a NORTH Canterbury collapse - so you'll only get your first $100,000 back.' Context: This refers both to the collapse of the South Canterbury Finance Company and to the problems that people are having with insurance companies in North Canterbury after the first Christchurch earthquake on September 4th 2010. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Two businessmen emerge from a building wondering whether 'Bill English' has ''Made any uplifting pronouncements on the economy or budget lately?..' On the footpath outside is Finance Minister Bill English wearing a sandwich board that reads 'the end is nigh' and carrying a banner that reads 'We're doomed'. Context - the impact of an already struggling economy of the Christchurch earthquakes of 4 September 2010 and 22 February 2011. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

The 2010–2011 Canterbury earthquake sequence began with the 4 September 2010, Mw7.1 Darfield earthquake and includes up to ten events that induced liquefaction. Most notably, widespread liquefaction was induced by the Darfield and Mw6.2 Christchurch earthquakes. The combination of well-documented liquefaction response during multiple events, densely recorded ground motions for the events, and detailed subsurface characterization provides an unprecedented opportunity to add well-documented case histories to the liquefaction database. This paper presents and applies 50 high-quality cone penetration test (CPT) liquefaction case histories to evaluate three commonly used, deterministic, CPT-based simplified liquefaction evaluation procedures. While all the procedures predicted the majority of the cases correctly, the procedure proposed by Idriss and Boulanger (2008) results in the lowest error index for the case histories analyzed, thus indicating better predictions of the observed liquefaction response.

Images, UC QuakeStudies

A view of the Cranmer Court building on the corner of Kilmore and Montreal Streets, showing damage from the 4 September 2010 earthquake. Masonry has fallen away from the apexes of several of the building's gables, which have been reinforced with timber bracing. A green cord has been used to tie bracing to the octagonal section on the corner of the building. This corner section is the part that housed Plato Creative from March 2008 to November 2009.

Images, Alexander Turnbull Library

The globe is depicted as a hand grenade; the skeletal remains of a hand reach out to 'pull the pin'. Context - the fragility of the world from a New Zealand point of view seen in the light of the Christchurch earthquakes of 4 September 2010 and 22 February 2011 and the Japanese earthquake and tsunami of 22 February 2011 and the present threat of a nuclear catastrophe caused by damaged nuclear power plants. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

The 2010-2011 Canterbury earthquake sequence was extremely damaging to structures in Christchurch and continues to have a large economic and social impact on the city and surrounding regions. In addition to strong ground shaking (Bradley and Cubrinovski 2011 SRL; Bradley 2012 SDEE), extensive liquefaction was observed, particularly in the 4 September 2010 Darfield earthquake and the 22 February 2011 Christchurch earthquake (Cubrinovski et al. 2010 BNZSEE; 2011 SRL). Large observed vertical ground motion amplitudes were recorded in the events in this sequence, with vertical peak ground accelerations of over 2.2g being observed at the Heathcote Valley Primary School during the Christchurch earthquake, and numerous other vertical motions exceeding 1.0g (Bradley and Cubrinovski 2011 SRL; Bradley 2012 SDEE; Fry et al 2011 SRL). Vertical peak ground accelerations of over 1.2g were observed in the Darfield earthquake.

Images, Alexander Turnbull Library

Two people peer out from underneath a table waiting for an earthquake predicted by astrologer Ken Ring. One of them says 'Load of rubbish that Ken Ring prediction eh?' and the other agrees. Context - After the two big earthquakes in Christchurch on 4 September 2010 and 22 February 2011, the so-called Moon Man, Ken Ring, is backing away from his prediction that Christchurch will be whacked by a huge earthquake on the 20th of March 2011. His claims terrified Cantabrians and led to people fleeing Christchurch. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Maori Party MP for Te Tai Tonga, Rahui Katene' is buried up to her neck in earthquake rubble as she reads a newspaper headline referring to her statement that the aftermath of the earthquake has demonstrated 'racism and ethnic profiling'. Rahui Katene's head is disintegrating and two engineers who are examining the damage decide that 'This can't be repaired, it needs to be condemned'. Rahui Katene says the authorities, who kicked a Christchurch family out of a welfare centre that was set up after the Christchurch earthquake that struck on the 4th September, should apologise for judging them too early and shaming them publicly. Mrs Katene was also concerned about claims that Maori youth were being targeted by police. "I've heard from whanau that in one particular area rangatahi who were volunteering in their community and helping their whanau were accused by police of theft. The whanau are trying to work these issues through with the police, but I'm growing concerned about what appears to be ethnic profiling." Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

A huge fist representing 'quakes', that is wearing a boxing glove, thumps a man who represents 'CHCH' (Christchurch) 'WHUMP! WHUMP! WHUMP!' The man is knocked out. Context - Magnitude 6.0 and 5.5 earthquakes rocked Christchurch again at 1pm and 2.20pm on 13th June 2011. These quakes follow the first earthquake on September 4th 2010 and the second on February 22nd 2011. (www.stuff.co.nz, 13 June 2011) Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

ACT leader Rodney Hide stands alone in the middle of a blasted plain that was once the 'Christchurch CBD' and says 'A level playing field, excellent. Now we can leave the rest to the market'. Context - Christchurch after the earthquakes of 4 September 2010 and 22 February 2011. ACT explicitly promotes a free market philosophy - a (literal) level playing field in the Christchurch CBD sounds like an excellent opportunity to test the powers of the free market. Quantity: 1 digital cartoon(s).

Research Papers, Lincoln University

At 4.35 a.m. on the 4th of September 2010 Christchurch residents were shaken awake by a magnitude 7.1 earthquake, the largest earthquake to hit urban New Zealand for nearly 80 years. It was a large earthquake. On average the world only has 17 earthquakes a year larger than magnitude seven. Haiti’s earthquake in January 2010 was magnitude 7.1 and Chile’s earthquake in February was magnitude 8.8. Although it was a big quake, Christchurch was lucky. In Haiti’s earthquake over 230,000 people were killed and in Chile 40,000 homes were destroyed. Happily this was not the situation in Christchurch, however the earthquake has caused considerable damage. The challenge for the Landscape Architecture community is to contribute to the city’s reconstruction in ways that will not only fix the problems of housing, and the city’s urban, suburban and neighbourhood fabric but that will do so in ways that will help solve the landscape problems that dogged the city before the earthquake struck.

Images, Alexander Turnbull Library

A woman sits reading a newspaper with reports about the Japanese earthquake and the latest news on Christchurch post-earthquake. Her husband has just put a Jerry Lee Lewis record on the turntable and the song 'Whole lotta shakin' goin' on' is playing; he says Didn't I always say this guy was ahead of his time?' Context - The Christchurch earthquakes of September 4 2010 and February 22 2011 as well as the Japanese earthquake and tsunami of 11 March 2011. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Shows a couple in their car driving along a road festooned with election billboards. The man reads a billboard and comments that the mayor is promising to 'move our district forward' and his partner suggests that with all the new jobs down in Christchurch maybe he should move the district down there. Probably refers to mayoral hopefuls in Whangarei, Pamela Sue Peters or Stan Semenoff, suggesting that people should move to Christchurch for jobs which, since the 4th September 2010 earthquake, are going to be plentiful. But it seems that every mayoral candidate in the country is intent on moving his or her part of New Zealand forward if they win the October 9 local body election. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

In the period between September 2010 and December 2011, Christchurch was shaken by a series of strong earthquakes including the MW7.1 4 September 2010, Mw 6.2 22 February 2011, MW6.2 13 June 2011 and MW6.0 23 December 2011 earthquakes. These earthquakes produced very strong ground motions throughout the city and surrounding areas that resulted in soil liquefaction and lateral spreading causing substantial damage to buildings, infrastructure and the community. The stopbank network along the Kaiapoi and Avon River suffered extensive damage with repairs projected to take several years to complete. This presented an opportunity to undertake a case-study on a regional scale of the effects of liquefaction on a stopbank system. Ultimately, this information can be used to determine simple performance-based concepts that can be applied in practice to improve the resilience of river protection works. The research presented in this thesis draws from data collected following the 4th September 2010 and 22nd February 2011 earthquakes. The stopbank damage is categorised into seven key deformation modes that were interpreted from aerial photographs, consultant reports, damage photographs and site visits. Each deformation mode provides an assessment of the observed mechanism of failure behind liquefaction-induced stopbank damage and the factors that influence a particular style of deformation. The deformation modes have been used to create a severity classification for the whole stopbank system, being ‘no or low damage’ and ‘major or severe damage’, in order to discriminate the indicators and factors that contribute to ‘major to severe damage’ from the factors that contribute to all levels of damage a number of calculated, land damage, stopbank damage and geomorphological parameters were analysed and compared at 178 locations along the Kaiapoi and Avon River stopbank systems. A critical liquefiable layer was present at every location with relatively consistent geotechnical parameters (cone resistance (qc), soil behaviour type (Ic) and Factor of Safety (FoS)) across the study site. In 95% of the cases the critical layer occurred within two times the Height of the Free Face (HFF,). A statistical analysis of the geotechnical factors relating to the critical layer was undertaken in order to find correlations between specific deformation modes and geotechnical factors. It was found that each individual deformation mode involves a complex interplay of factors that are difficult to represent through correlative analysis. There was, however, sufficient data to derive the key factors that have affected the severity of deformation. It was concluded that stopbank damage is directly related to the presence of liquefaction in the ground materials beneath the stopbanks, but is not critical in determining the type or severity of damage, instead it is merely the triggering mechanism. Once liquefaction is triggered it is the gravity-induced deformation that causes the damage rather than the shaking duration. Lateral spreading and specifically the depositional setting was found to be the key aspect in determining the severity and type of deformation along the stopbank system. The presence or absence of abandoned or old river channels and point bar deposits was found to significantly influence the severity and type of deformation. A review of digital elevation models and old maps along the Kaiapoi River found that all of the ‘major to severe’ damage observed occurred within or directly adjacent to an abandoned river channel. Whilst a review of the geomorphology along the Avon River showed that every location within a point bar deposit suffered some form of damage, due to the depositional environment creating a deposit highly susceptible to liquefaction.

Research papers, University of Canterbury Library

This poster provides a comparison between the strong ground motions observed in the 22 February 2011 Mw6.3 Christchurch earthquake with those observed in Tokyo during the 11 March 2011 Mw9.0 Tohoku earthquake. The destuction resulting from both of these events has been well documented, although tsunami was the principal cause of damage in the latter event, and less attention has been devoted to the impact of earthquake-induced ground motions. Despite Tokyo being located over 100km from the nearest part of the causative rupture, the ground motions observed from the Tohoku earthquake were significant enough to cause structural damage and also significant liquefaction to loose reclaimed soils in Tokyo Bay. The author was fortunate enough (from the perspective of an earthquake engineer) to experience first-hand both of these events. Following the Tohoku event, the athor conducted various ground motion analyses and reconniassance of the Urayasu region in Tokyo Bay affected by liquefaction in collaboration with Prof. Kenji Ishihara. This conference is therefore a fitting opportunity in which to discuss some of authors insights obtained as a result of this first hand knowledge. Figure 1 illustrates the ground motions recorded in the Christchurch CBD in the 22 February 2011 and 4 September 2010 earthquakes, with that recorded in Tokyo Bay in the 11 March 2011 Tohoku earthquake. It is evident that these three ground motions vary widely in their amplitude and duration. The CBGS ground motion from the 22 February 2011 event has a very large amplitude (nearly 0.6g) and short duration (approx. 10s of intense shaking), as a result of the causal Mw6.3 rupture at short distance (Rrup=4km). The CBGS ground motion from the 4 September 2010 earthquake has a longer duration (approx. 30s of intense shaking), but reduced acceleration amplitude, as a result of the causal Mw7.1 rupture at a short-to-moderate distance (Rrup=14km). Finally, the Urayasu ground motion in Tokyo bay during the 11 March 2011 Tohoku earthquake exhibits an acceleration amplitude similar to the 4 September 2010 CBGS ground motion, but a significantly larger duration (approx 150s of intense shaking). Clearly, these three different ground motions will affect structures and soils in different ways depending on the vibration characteristics of the structures/soil, and the potential for strength and stiffness degradation due to cumulative effects. Figure 2 provides a comparison between the arias intensities of the several ground motion records from the three different events. It can be seen that the arias intensities of the ground motions in the Christchurch CBD from the 22 February 2011 earthquake (which is on average AI=2.5m/s) is approximately twice that from the 4 September 2010 earthquake (average AI≈1.25). This is consistent with a factor of approximately 1.6 obtained by Cubrinovski et al. (2011) using the stress-based (i.e.PGA-MSF) approach of liquefaction triggering. It can also be seen that the arias intensity of the ground motions recorded in Tokyo during the 2011 Tohoku earthquake are larger than ground motions in the Christchurch CBD from the 4 September 2011 earthquake, but smaller than those of the 22 February 2011 earthquake. Based on the arias intensity liquefaction triggering approach it can therefore be concluded that the ground motion severity, in terms of liquefaction potential, for the Tokyo ground motions is between those ground motions in Christchurch CBD from the 4 September 2010 and 22 February 2011 events.

Images, Alexander Turnbull Library

An official at the 'Otago Port Co.' stares in bewilderment at the feet of his colleague at the Lyttelton Port Company who says 'Ah, that might do it for now' as he hangs upside down by his feet from his upturned desk in the aftermath of the 4th September Canterbury earthquake. Text above reads 'News, the Lyttelton Port Co. has halted merger talks with Otago since the 'quake, saying "the landscape has changed". Refers to the news that Lyttelton Port, the South Island's biggest port, abandoned two-years of merger talks with rival Port Otago because it is preoccupied with rebuilding after the Canterbury earthquake. Quantity: 1 digital cartoon(s).

Research papers, The University of Auckland Library

The M7.1 Darfield earthquake shook the town of Christchurch (New Zealand) in the early morning on Saturday 4th September 2010 and caused damage to a number of heritage unreinforced masonry buildings. No fatalities were reported directly linked to the earthquake, but the damage to important heritage buildings was the most extensive to have occurred since the 1931 Hawke‟s Bay earthquake. In general, the nature of damage was consistent with observations previously made on the seismic performance of unreinforced masonry buildings in large earthquakes, with aspects such as toppled chimneys and parapets, failure of gables and poorly secured face-loaded walls, and in-plane damage to masonry frames all being extensively documented. This report on the performance of the unreinforced masonry buildings in the 2010 Darfield earthquake provides details on typical building characteristics, a review of damage statistics obtained by interrogating the building assessment database that was compiled in association with post-earthquake building inspections, and a review of the characteristic failure modes that were observed.

Images, Alexander Turnbull Library

Text across the top of the cartoon reads 'When the luck ran out' and shows a disintegrating building that includes two dice with a skull and crossbone on one facet. Context - On 22 February 2011 at 12:51 pm (NZDT), Christchurch experienced a major magnitude 6.3 earthquake, which resulted in severe damage and many casualties. A National State of Emergency has been declared. This followed on from an original magnitude 7.1 earthquake on 4 September 2010 which did far less damage and in which no-one died. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

The cartoon shows a rugby goalpost in a bad state of repair; it is held together with bandages and when a player kicks a ball that represents 'World Cup Games' towards the goalpost, it hits one of the side posts that flies a Christchurch flag, causing the post to break. Context - the decision that Christchurch will not be able to host any of the Rugby World Cup games because of the damage caused by the earthquakes of 4 September 2010 and 22 February 2011. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

This paper provides a photographic tour of the ground-surface rupture features of the Greendale Fault, formed during the 4th September 2010 Darfield Earthquake. The fault, previously unknown, produced at least 29.5 km of strike-slip surface deformation of right-lateral (dextral) sense. Deformation, spread over a zone between 30 and 300 m wide, consisted mostly of horizontal flexure with subsidiary discrete shears, the latter only prominent where overall displacement across the zone exceeded about 1.5 m. A remarkable feature of this event was its location in an intensively farmed landscape, where a multitude of straight markers, such as fences, roads and ditches, allowed precise measurements of offsets, and permitted well-defined limits to be placed on the length and widths of the surface rupture deformation.

Images, Alexander Turnbull Library

Shows the face of a man with a large tear rolling down his cheek ; in the tear is the word 'Christchurch'. Context - On 22 February 2011 at 12:51 pm (NZDT), Christchurch experienced a major magnitude 6.3 earthquake, which resulted in severe damage and many casualties. A National State of Emergency has been declared. This followed on from an original magnitude 7.1 earthquake on 4 September 2010 which did far less damage and in which no-one died. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

In three small frames above the main frame, milk tankers are shown bumping wildly over Christchurch roads made uneven by the earthquakes of September 4 2010 and February 22 2011; and in the large frame below a man is painting out the word 'milk' on a tanker and replacing it with the word 'butter'. Context - the bad roads caused by the erathquakes in Canterbury have turned the milk into butter. Colour and black and white versions available Title from file name Quantity: 2 digital cartoon(s).

Research papers, University of Canterbury Library

The Canterbury Earthquakes of 2010-2011, in particular the 4th September 2010 Darfield earthquake and the 22nd February 2011 Christchurch earthquake, produced severe and widespread liquefaction in Christchurch and surrounding areas. The scale of the liquefaction was unprecedented, and caused extensive damage to a variety of man-made structures, including residential houses. Around 20,000 residential houses suffered serious damage as a direct result of the effects of liquefaction, and this resulted in approximately 7000 houses in the worst-hit areas being abandoned. Despite the good performance of light timber-framed houses under the inertial loads of the earthquake, these structures could not withstand the large loads and deformations associated with liquefaction, resulting in significant damage. The key structural component of houses subjected to liquefaction effects was found to be their foundations, as these are in direct contact with the ground. The performance of house foundations directly influenced the performance of the structure as a whole. Because of this, and due to the lack of research in this area, it was decided to investigate the performance of houses and in particular their foundations when subjected to the effects of liquefaction. The data from the inspections of approximately 500 houses conducted by a University of Canterbury summer research team following the 4th September 2010 earthquake in the worst-hit areas of Christchurch were analysed to determine the general performance of residential houses when subjected to high liquefaction loads. This was followed by the detailed inspection of around 170 houses with four different foundation types common to Christchurch and New Zealand: Concrete perimeter with short piers constructed to NZS3604, concrete slab-on-grade also to NZS3604, RibRaft slabs designed by Firth Industries and driven pile foundations. With a focus on foundations, floor levels and slopes were measured, and the damage to all areas of the house and property were recorded. Seven invasive inspections were also conducted on houses being demolished, to examine in more detail the deformation modes and the causes of damage in severely affected houses. The simplified modelling of concrete perimeter sections subjected to a variety of liquefaction-related scenarios was also performed, to examine the comparative performance of foundations built in different periods, and the loads generated under various bearing loss and lateral spreading cases. It was found that the level of foundation damage is directly related to the level of liquefaction experienced, and that foundation damage and liquefaction severity in turn influence the performance of the superstructure. Concrete perimeter foundations were found to have performed most poorly, suffering high local floor slopes and being likely to require foundation repairs even when liquefaction was low enough that no surface ejecta was seen. This was due to their weak, flexible foundation structure, which cannot withstand liquefaction loads without deforming. The vulnerability of concrete perimeter foundations was confirmed through modelling. Slab-on-grade foundations performed better, and were unlikely to require repairs at low levels of liquefaction. Ribraft and piled foundations performed the best, with repairs unlikely up to moderate levels of liquefaction. However, all foundation types were susceptible to significant damage at higher levels of liquefaction, with maximum differential settlements of 474mm, 202mm, 182mm and 250mm found for concrete perimeter, slab-on-grade, ribraft and piled foundations respectively when subjected to significant lateral spreading, the most severe loading scenario caused by liquefaction. It was found through the analysis of the data that the type of exterior wall cladding, either heavy or light, and the number of storeys, did not affect the performance of foundations. This was also shown through modelling for concrete perimeter foundations, and is due to the increased foundation strengths provided for heavily cladded and two-storey houses. Heavy roof claddings were found to increase the demands on foundations, worsening their performance. Pre-1930 concrete perimeter foundations were also found to be very vulnerable to damage under liquefaction loads, due to their weak and brittle construction.

Research papers, University of Canterbury Library

On 4 September 2010, people in Canterbury were shaken from their beds by a major earthquake. This report tells the story of the University of Canterbury (UC), its staff and its students, as they rose to the many challenges presented by the earthquake. This report however, is intended to do more than just acknowledge their hard work and determination; it also critically reflects on the things that worked well and the aspects of the response that, in hindsight, could have been done better. Luckily major events such as this earthquake do not happen every day. UC has benefited from the many universities around the world that have shared their experiences of previous disasters. We hope that this report serves to pass forward the favour and enables others to benefit from the lessons that we have learnt from this event.

Images, Alexander Turnbull Library

The arms of a woman who represents New Zealand reach out to a baby to whom she has just given birth. The baby represents '2011' and is a particularly hideous specimen. The doctor who holds the baby says 'He's cute now but wait 'til he gets older!' Outside the window is seen a cracked and damaged landscape and a storm rages; the headstone of a grave reads 'RIP 2010'. Context - Christchurch or maybe the South Island have had a bad year because of the Pike River Mine disaster and the earthquake of 4 September 2010. There is perhaps prescience in this cartoon because on 22 February 2011 a much worse earthquake hit Christchurch. Published in The Press Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Text across the top of the cartoon reads 'always design in context' There is a globe, small in the context, with a little message reading 'you are here' pointing, perhaps, to New Zealand or even more specifically, Christchurch; the globe is being threatened from all sides by forces of nature represented by the hand of god reaching out of clouds. Context - the Christchurch earthquakes of 4 September 2010 and 22 February 2011 and the idea that buildings must be designed in the context of their environment - NZ being earthquake-prone. Perhaps also the idea of 'design in context' in a broader sense. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Text at the top of the cartoon reads 'NZ city strengthening?' A whole city enclosed in a glass dome and balanced on huge springs intended to make it earthquake resistant rocks as another aftershock hits. Context - Two earthquakes and hundreds of aftershocks have hit Christchurch, the first on 4 September 2010 and a second more devastating one on 22 February 2011. There has been great emphasis on making heritage buildings that are rebuilt and all new buildings earthquake resistant. The example in the cartoon is perhaps a Springs-with-damper base isolator. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Homeless earthquake victims arrive in Hobbiton with their bags when it seems that New Zealand is going to lose The Hobbit to another country. Refers to the dispute between Warner Brothers, represented by Peter Jackson, and NZ Actors Equity over a union demand for negotiations over the terms and conditions offered in the contracts for actors and others working on the film very nearly caused the film to be made somewhere else. The battle, which was eventually resolved successfully after meetings between PM John Key and Warner Brothers representatives, divided New Zealanders. Refers also to the Canterbury earthquake of 4th September and its aftershocks that have left many houses uninhabitable. Quantity: 1 digital cartoon(s).