
It is not a matter of if a major earthquake will happen in New Zealand, it is when. Earthquakes wreak havoc, cut off power and water supply, lines of communication, sewer, supply chains, and transport infrastructure. People get injured and whole communities can get cut off the rest of the country for extended periods of time. Countries taking measures to increase the population's preparedness tend to suffer less severe consequences than those that do not. Disaster management authorities deliver comprehensive instructions and preparation guidance, yet communities remain grossly underprepared. There are multiple factors that influence motivation for preparedness. Personal experience is one of the most significant factors that influence preparedness motivation. Not many people will experience a severe and damaging earthquake in their lifetime. A serious game (SG) that is a computer simulation of an earthquake is a tool that can let participants experience the earthquake and its aftermath from the safety of their computer. The main result of this research is a positive answer to the question: Can a serious game motivate people to prepare for earthquakes at least just as good as a personal experience of at least a moderate earthquake? There are different levels of immersion this serious game can be implemented at. In this thesis the same earthquake experience scenario – SG “ShakeUp” is implemented as a desktop application and a virtual reality (VR) application. A user study is conducted with the aim of comparing the motivation level achieved by the two versions of the SG “ShakeUp”. In this study no benefits of using VR over traditional desktop application were found: participants trying both versions of the SG “ShakeUp” reported similar levels of motivation to prepare for earthquakes immediately after the experiment. This means that both versions of the experience were equally effective in motivating participants to prepare for earthquakes. An additional benefit of this result is that the cheaper and easier to deliver desktop version can be widely used in various education campaigns. Participants reported being more motivated to prepare for earthquakes by either version of the SG “ShakeUp” than by any other contributing factor, including their previous earthquake experience or participation in a public education campaign. Both versions of the SG “ShakeUp” can successfully overcome personal bias, unrealistic optimism, pessimism, lack of perceived control over one’s earthquake preparation actions, fatalism, and sense of helplessness in the face of the earthquakes and motivate the individual to prepare for earthquakes. Participants without the prior earthquake experience benefit most from the SG “ShakeUp” regardless of the version tried, compared to the participants who had experienced an earthquake: significantly more of them will reconsider their current level of earthquake preparedness; about 24% more of them attribute their increased level of motivation to prepare for earthquakes to the SG “ShakeUp”. For every earthquake preparation action there is about 25% more people who felt motivated to do it after trying the SG “ShakeUp” than those who have done this preparation action before the experiment. After trying either version of the SG “ShakeUp”, people who live in a free standing house and those who live in a rental property reported highest levels of intent to carry on with the preparation actions. The proposed application prototype has been discussed with the University of Canterbury Earthquake Centre and received very positive feedback as having potential for practical use by various disaster management authorities and training institutions. The research shows that the SG “ShakeUp” motivates people to prepare for earthquakes as good as a personal earthquake experience and can be successfully used in various education campaigns.
The Canterbury Earthquakes of 2010-2011, in particular the 4th September 2010 Darfield earthquake and the 22nd February 2011 Christchurch earthquake, produced severe and widespread liquefaction in Christchurch and surrounding areas. The scale of the liquefaction was unprecedented, and caused extensive damage to a variety of man-made structures, including residential houses. Around 20,000 residential houses suffered serious damage as a direct result of the effects of liquefaction, and this resulted in approximately 7000 houses in the worst-hit areas being abandoned. Despite the good performance of light timber-framed houses under the inertial loads of the earthquake, these structures could not withstand the large loads and deformations associated with liquefaction, resulting in significant damage. The key structural component of houses subjected to liquefaction effects was found to be their foundations, as these are in direct contact with the ground. The performance of house foundations directly influenced the performance of the structure as a whole. Because of this, and due to the lack of research in this area, it was decided to investigate the performance of houses and in particular their foundations when subjected to the effects of liquefaction. The data from the inspections of approximately 500 houses conducted by a University of Canterbury summer research team following the 4th September 2010 earthquake in the worst-hit areas of Christchurch were analysed to determine the general performance of residential houses when subjected to high liquefaction loads. This was followed by the detailed inspection of around 170 houses with four different foundation types common to Christchurch and New Zealand: Concrete perimeter with short piers constructed to NZS3604, concrete slab-on-grade also to NZS3604, RibRaft slabs designed by Firth Industries and driven pile foundations. With a focus on foundations, floor levels and slopes were measured, and the damage to all areas of the house and property were recorded. Seven invasive inspections were also conducted on houses being demolished, to examine in more detail the deformation modes and the causes of damage in severely affected houses. The simplified modelling of concrete perimeter sections subjected to a variety of liquefaction-related scenarios was also performed, to examine the comparative performance of foundations built in different periods, and the loads generated under various bearing loss and lateral spreading cases. It was found that the level of foundation damage is directly related to the level of liquefaction experienced, and that foundation damage and liquefaction severity in turn influence the performance of the superstructure. Concrete perimeter foundations were found to have performed most poorly, suffering high local floor slopes and being likely to require foundation repairs even when liquefaction was low enough that no surface ejecta was seen. This was due to their weak, flexible foundation structure, which cannot withstand liquefaction loads without deforming. The vulnerability of concrete perimeter foundations was confirmed through modelling. Slab-on-grade foundations performed better, and were unlikely to require repairs at low levels of liquefaction. Ribraft and piled foundations performed the best, with repairs unlikely up to moderate levels of liquefaction. However, all foundation types were susceptible to significant damage at higher levels of liquefaction, with maximum differential settlements of 474mm, 202mm, 182mm and 250mm found for concrete perimeter, slab-on-grade, ribraft and piled foundations respectively when subjected to significant lateral spreading, the most severe loading scenario caused by liquefaction. It was found through the analysis of the data that the type of exterior wall cladding, either heavy or light, and the number of storeys, did not affect the performance of foundations. This was also shown through modelling for concrete perimeter foundations, and is due to the increased foundation strengths provided for heavily cladded and two-storey houses. Heavy roof claddings were found to increase the demands on foundations, worsening their performance. Pre-1930 concrete perimeter foundations were also found to be very vulnerable to damage under liquefaction loads, due to their weak and brittle construction.
LVS acts as site brokers for a creative Christchurch, finding short and medium-term uses for the many vacant sites and buildings of Christchurch.
The Charter is an agreement on health and safety between the leaders of a number of government organisations and companies leading the rebuild.
A forum created by Jeremy McManus to discuss ideas for rebuilding Christchurch following the February 22, 2011 earthquake. Topics discussed include housing, transportation, and urban design.
Blog providing information for residents of the Christchurch suburb of Mt Pleasant following the earthquakes. Includes news, information on basic services, and contacts for help and advice.
Government initiative providing temporary accommodation service to people displaced by the Christchurch earthquake. Contains information about the service, and registration forms for property owners and applicants.
website of the Residents Association and Community Group representatives from the earthquake-affected neighbourhoods of Canterbury. Includes sections on insurance, legal and financial information, and business support.
an advocacy network that aims to highlight injustices and issues affecting residents following the Canterbury earthquakes, and challenge decisions, policies and practices that disadvantage recovery.
Site is managed on behalf of the Royal Commission of Inquiry into Building Failure Caused by the Canterbury Earthquakes by the Department of Internal Affairs.
Site of the National Party MP for Christchurch Central. Communicates her political activities and parliamentary speeches. Includes updates about Christchurch earthquake recovery and rebuild.
Site of Anglican Diocese of Christchurch. Includes news and information on the diocese, its schools and churches, diocesan events, social and social justice issues, and the cathedral rebuild process.
Blog of Sandy Lees, a genealogist, taphophiliac, and ephemera collector. Reflects her interest in Canterbury history. Includes a section on the insurance woes the blogger had after the Christchurch earthquakes.
Promotes health and wellbeing for people living in Christchurch, N.Z. Site includes Healthy Christchurch Charter, Winter Warmth and Wellbeing Information Sheet and Service Directory, City health profile etc.
Interactive site in which people are able to relate their experiences of the Canterbury earthquakes of September 4, 2010 and February 22, 2011 as well as the repercussions.
A blog by an ex-employee of the Earthquake Commission discussing flaws in its handling of insurance claims made as the result of the Canterbury earthquakes of 2010 and 2011.
Information on events, weekly services, music, history and architecture, news and newsletters and current and archived sermons. Includes both pre-earthquake information, and current life of the cathedral.
People share messages of thanks for help received after the Christchurch earthquake on February 22, 2011.
Information about the EQC's work to provide natural disaster insurance to residential property owners. Canterbury earthquake related information can be found in the archived instances from September 2010-
Summarises "Magnetic South," an online discussion about the long-term future of Christchurch in June 2011, with ideas about how the city might recover from the 2011 earthquake.
Provides information about the redevelopment of Christchurch central city following February’s earthquake and the draft plan. Includes a virtual tour through the city, pre and post quake.
Website of the St Albans Residents Association Incorporated (SARA), dedicated to the recovery of St Albans and its city, Christchurch after the 2010 and 2011 earthquakes.
An initiative by the CPIT Faculty of Creative Industries to establish gallery and studio spaces for Christchurch artists following the Christchurch earthquake, by using flexible, adaptable cube modules.
Site of an exhibition and discussion series that explores Canterbury’s built environment and invites public input to identify opportunities to create a better and more liveable environment after the earthquake.
Digital 'basket' for collecting the community's stories, photos, and experiences of the Canterbury earthquake on Sept. 4, 2010, and the Christchurch earthquake on February 22, 2011.
Site of industry representative organisations provides a one-stop portal where Cantabrians can research and engage local reconstruction professionals from plumbers and electricians to builders and civil contractors. Includes advice and tips.
Site of the Canterbury Development Corporation (CDC), part of Christchurch City Council. When viewed May 2011 the focus of the site was to assist businesses affected by the 2011 Christchurch earthquake.
Information about Canterbury's regional council and the services it provides, including plans, policies, reports, and resource consent information. Earthquake related information can be found in the archived instances from September 2010-
Information about the Selwyn District and the Selwyn District Council, its activities and services. Includes online publications. Earthquake related information can be found in the archived instances from September 2010-
Lawrence Roberts' blog for those living in Cowlishaw Street, Chaddesden Lane, Patten Street, Retreat Road and close by. Includes information and news on earthquake assessment, repairs/rebuilding and related matters; and photo gallery.