Search

found 97623 results

Research papers, University of Canterbury Library

The recent earthquakes in Christchurch have made it clear that issues exist with current RC frame design in New Zealand. In particular, beam elongation in RC frame buildings was widespread and resulted in numerous buildings being rendered irreparable. Design solutions to overcome this problem are clearly needed, and the slotted beam is one such solution. This system has a distinct advantage over other damage avoidance design systems in that it can be constructed using current industry techniques and conventional reinforcing steel. As the name suggests, the slotted beam incorporates a vertical slot along part of the beam depth at the beam-column interface. Geometric beam elongation is accommodated via opening and closing of these slots during seismically induced rotations, while the top concrete hinge is heavily reinforced to prevent material inelastic elongation. Past research on slotted beams has shown that the bond demand on the bottom longitudinal reinforcement is increased compared with equivalent monolithic systems. Satisfying this increased bond demand through conventional means may yield impractical and economically less viable column dimensions. The same research also indicated that the joint shear mechanism was different to that observed within monolithic joints and that additional horizontal reinforcement was required as a result. Through a combination of theoretical investigation, forensic analysis, and database study, this research addresses the above issues and develops design guidelines. The use of supplementary vertical joint stirrups was investigated as a means of improving bond performance without the need for non-standard reinforcing steel or other hardware. These design guidelines were then validated experimentally with the testing of two 80% scale beam-column sub-assemblies. The revised provisions for bond within the bottom longitudinal reinforcement were found to be adequate while the top longitudinal reinforcement remained nominally elastic throughout both tests. An alternate mechanism was found to govern joint shear behaviour, removing the need for additional horizontal joint reinforcement. Current NZS3101:2006 joint shear reinforcement provisions were found to be more than adequate given the typically larger column depths required rendering the strut mechanism more effective. The test results were then used to further refine design recommendations for practicing engineers. Finally, conclusions and future research requirements were outlined.

Research papers, University of Canterbury Library

The extent of liquefaction in the eastern suburbs of Christchurch (Aranui, Bexley, Avonside, Avonhead and Dallington) from the February 22 2011 Earthquake resulted in extensive damage to in-ground waste water pipe systems. This caused a huge demand for portable toilets (or port-a-loos) and companies were importing them from outside Canterbury and in some instances from Australia. However, because they were deemed “assets of importance” under legislation, their allocation had to be coordinated by Civil Defence and Emergency Management (CDEM). Consequently, companies supplying them had to ignore requests from residents, businesses and rest homes; and commitments to large events outside of the city such as the Hamilton 400 V8 Supercars and the Pasifika Festival in Auckland were impacted. Frustrations started to show as neighbourhoods questioned the equity of the port-a-loos distribution. The Prime Minister was reported as reassuring citizens in the eastern suburbs in the first week of March that1 “a report about the distribution of port-a-loos and chemical toilets shows allocation has been fair. Key said he has asked Civil Defence about the distribution process and where the toilets been sent. He said there aren’t enough for the scale of the event but that is quickly being rectified and the need for toilets is being reassessed all the time.” Nonetheless, there still remained a deep sense of frustration and exclusion over the equity of the port-a-loos distribution. This study took the simple approach of mapping where those port-a-loos were on 11-12 March for several areas in the eastern suburbs and this suggested that their distribution was not equitable and was not well done. It reviews the predictive tools available for estimating damage to waste water pipes and asks the question could this situation have been better planned so that pot-a-loo locations could have been better prioritised? And finally it reviews the integral roles of communication and monitoring as part of disaster management strategy. The impression from this study is that other New Zealand urban centres could or would also be at risk and that work is need to developed more rational management approaches for disaster planning.

Research papers, University of Canterbury Library

This thesis seeks to examine how the integration of play, small toys specifically, and the use of solution-focused brief therapy techniques can affect the outcomes for primary school aged children undergoing counselling. The setting is a counselling agency in Christchurch, New Zealand. A qualitative research approach is used and the data analysed using a narrative inquiry approach. The context of this study is the counselling service of an agency where young children, adolescents and their families are helped and supported through a variety of life issues. The counselling the participants are offered uses a combination of a solution-focused and play therapy where the purpose is to encourage clients to find exceptions to their presenting problems and identify their preferred future. The aim of this study is to help the children navigate their problem through a better understanding of and the gaining of personal skills and strengths. Participants were invited to be part of this study through the agency waiting list. The four included presented with a variety of reasons for coming to counselling yet these proved similar to that which the agency has been routinely presented with in the aftermath of the Canterbury earthquakes from 2011 to present day. Each participant had the consent of their parents or caregivers to engage in this project. The participants themselves separately agreed to engage in a solution- focused counselling process where the counsellor also integrated the use of small toys as part of the course. Counselling sessions were audiotaped, aspects photographed and analysed with a specific focus on client engagement. Four key themes emerged as the participants explored their personal narrative. Firstly, the “I’m OK” theme depicted in their first scaling activity, secondly a recognition that things could indeed be better and they needed help. Thirdly, a realisation of their own strengths and skills and finally that the future was an optimistic place to look forward to. These themes are described and explained through descriptions of the participant’s stories as well as self-reflection by the researcher. Transcriptions of sessions are included as are excerpts from the research journal and photographs of the use of the small toys by the children.

Research papers, University of Canterbury Library

Research in the governance of urban tourist spaces is characterized by a lack of argumentative inquiry and scant use of critical theory. This is evident, particularly, in the study of tourism and post-disaster urban recovery, with very few contributions assessing the phenomenon from a social theory perspective. This thesis examines the complex phenomenon of planning and governance for urban tourism spaces in contexts facing physical recovery from natural disasters. It does so by looking at the governance dynamics and the mechanism of decision- making put in place before and after triggering events like earthquakes and tsunamis. This thesis provides evidence from Christchurch, New Zealand, by focusing on the policies and strategies for the regeneration of the city centre put in place before and after the disruptive earthquakes of 2010 and 2011. The thesis looks at power relations, structures and ideologies through a Lukesian appraisal of pre-and-post disaster governance from two relevant urban tourist spaces located in the Christchurch central city area: the Arts Centre of Christchurch and the Town Hall and Performing Arts Precinct. The research strategy adopted for the study combined archival research, interviews with key stakeholders and fieldwork notes over a period of two years. The research deployed a comparative case study methodology that focuses on projects taking place within a spatially defined area of the city centre where special legislation was enacted as result of the earthquakes. The findings from the interviews and their triangulation with documents retrieved from national and local authorities suggest that the earthquakes affected the engagement among stakeholders and the mechanisms of decision-making. Also, the findings show patterns of disaster capitalism in post-earthquake governance for urban tourist spaces in the Christchurch CBD, with episodes of exclusion, lobbying and amendment of rules and legislation that directly benefited the interests of a narrow group of privileged stakeholders. Overall, the study shows that the earthquakes of 2010 and 2011 accelerated neoliberal practices of site development in Christchurch, with the seismic events used as a pretext to implement market-oriented site projects in the CBD area.

Research papers, University of Canterbury Library

After a disaster, cities experience profound social and environmental upheaval. Current research on disasters describes this social disruption along with collective community action to provide support. Pre-existing social capital is recognised as fundamental to this observed support. This research examines the relationship between sense of place for neighbourhood, social connectedness and resilience. Canterbury residents experienced considerable and continued disruption following a large and protracted sequence of earthquakes starting in September 2010. A major aftershock on 22 February 2011 caused significant loss of life, destruction of buildings and infrastructure. Following this earthquake some suburbs of Christchurch showed strong collective action. This research examines the features of the built environment that helped to form this cooperative support. Data were collected through semi-structured interviews with 20 key informants followed by 38 participants from four case study suburbs. The objectives were to describe the community response of suburbs, to identify the key features of the built environment and the role of social infrastructure in fostering social connectedness. The last objective was to contribute to future planning for community resilience. The findings from this research indicated that social capital and community competence are significant resources to be called upon after a disaster. Features of the local environment facilitated the formation of neighbourhood connections that enabled participants to cope, manage and to collectively solve problems. These features also strengthened a sense of belonging and attachment to the home territory. Propinquity was important; the bumping and gathering places such as schools, small local shops and parks provided the common ground for meaningful pre-existing local interaction. Well-defined geography, intimate street typology, access to quality natural space and social infrastructure helped to build the local social connections and develop a sense of place. Resourceful individuals and groups were also a factor, and many are drawn to live near the inner city or more natural places. The features are the same well understood attributes that contribute to health and wellbeing. The policy and planning framework needs to consider broader social outcomes, including resilience in new and existing urban developments. The socio-political structures that provide access to secure and stable housing and local education should also be recognised and incorporated into local planning for resilience and the everyday.

Research papers, University of Canterbury Library

Natural disasters are increasingly disruptive events that affect livelihoods, organisations, and economies worldwide. Research has identified the impacts and responses of organisations to different types of natural disasters, and have outlined factors, such as industry sector, that are important to organisational vulnerability and resilience. One of the most costly types of natural disasters in recent years has been earthquakes, and yet to date, the majority of studies have focussed on the effects of earthquakes in urban areas, while rural organisational impact studies have primarily focused on the effects of meteorological and climatic driven hazards. As a result, the likely impacts of an earthquake on rural organisations in a developed context is unconstrained in the literature. In countries like New Zealand, which have major earthquakes and agricultural sectors that are significant contributors to the economy, it is important to know what impacts an earthquake event would have on the rural industries, and how these impacts compare to that of a more commonly analysed, high-frequency event. In September of 2010, rural organisations in Canterbury experienced the 4 September 2010 Mw 7.1 `Darfield' earthquake and the associated aftershocks, which came to be known as the Canterbury earth- quake sequence. The earthquake sequence caused intense ground shaking, creating widespread critical service outages, structural and non-structural damage to built infrastructure, as well as ground surface damage from ooding, liquefaction and surface rupture. Concurrently on September 18 2010, rural organisations in Southland experienced an unseasonably late snowstorm and cold weather snap that brought prolonged sub-zero temperatures, high winds and freezing rain, damaging structures in the City of Invercargill and causing widespread livestock losses and production decreases across the region. This thesis documents the effects of the Canterbury earthquake sequence and Southland snowstorm on farming and rural non-farming organisations, utilizing comparable methodologies to analyse rural organisational impacts, responses and recovery strategies to natural disasters. From the results, a short- term impact assessment methodology is developed for multiple disasters. Additionally, a regional asset repair cost estimation model is proposed for farming organisations following a major earthquake event, and the use of social capital in rural organisational recovery strategies following natural disasters is analysed.

Research papers, University of Canterbury Library

Post-tensioned timber technology was originally developed and researched at the University of Canterbury (UC) in New Zealand in 2005. It can provide a low-damage seismic design solution for multi-storey mass timber buildings. Since mass timber products, such as cross-laminated timber (CLT), have high in-plane stiffness, a post-tensioned timber shear wall will deform mainly in a rocking mechanism. The moment capacity of the wall at the base is commonly determined using the elastic form of the Modified Monolithic Beam Analogy (MMBA). In the calculation of the moment capacity at the wall base, it is critical to accurately predict the location of the neutral axis and the timber compressive stress distribution. Three 2/3 scale 8.6m tall post-tensioned CLT walls were experimentally tested under quasi-static cyclic loading – both uni-directional and bi-directional- in this study. These specimens included a single wall, a coupled wall, and a C-shaped core-wall. The main objective was to develop post-tensioned C-shaped timber core-walls for tall timber buildings with enhanced lateral strength and stiffness. To better understand the timber compressive stress distributions at the wall base, particle tracking technology (PTT) technology was applied for the first time to investigate the behaviour of the compression toe. Previous post-tensioned timber testing primarily used the displacement measurements to determine the timber compressive behavior at the wall base or rocking interfaces. However, by using PTT technology, the timber strain measurements in the compression zone can be much more accurate as PTT is able to track the movement of many particles on the timber surface. This paper presents experimental testing results of post-tensioned CLT walls with a focus on capturing timber compressive behavior using PTT. The PTT measurements were able to better capture small base rotations which occurred at the onset of gap opening and capture unexpected phenomena in core-wall tests. The single wall test result herein presented indicates that while the MMBA could predict the moment rotation behavior with reasonable accuracy, the peak strain response was under predicted in the compression toe. Further detailed study is required to better understand the complex strain fields generated reflective of the inherent cross-thickness inhomogeneity and material variability of CLT.

Research papers, University of Canterbury Library

This paper reports on a service-learning public journalism project in which postgraduate journalism students explore ways to engage with and report on diverse communities. Media scholars have argued that news media, and local newspapers in particular, must re-engage with their communities. Likewise, journalism studies scholars have urged educators to give journalism students greater opportunities to reflect on their work by getting out among journalism’s critics, often consumers or citizens concerned about content and the preparation of future journalists. The challenge for journalism educators is to prepare students for working in partnership with communities while also developing their ability to operate reflectively and critically within the expectations of the news media industry and wider society. The aim of this project has been to help students find ways to both listen and lead in a community, and also reflect on the challenges and critiques of community journalism practices. The project began in 2013 with stories about residents’ recovery following the devastating 2011 Canterbury earthquakes, and aimed to create stories that could contribute to community connection and engagement, and thereby resilience and recovery. The idea was inspired by research about post-disaster renewal that indicated that communities with strong social capital and social networks were more resilient and recovered more quickly and strongly. The project’s longer-term aim has been to explore community journalism practices that give greater power to citizens and communities by prioritising listening and processes of engagement. Over several months, students network with a community group to identify subjects with whom they will co-create a story, and then complete a story on which they must seek the feedback of their subject. Community leaders have described the project as a key example of how to do things “with people not to people”, and an outstanding contribution to the community-led component of Canterbury’s recovery. Analysis of student reflections, which are a key part of each year’s project, reveals the process of engaging with communities has helped students to map community dynamics, think more critically about source relationships, editorial choices and objectivity norms, and to develop a perspective on the diverse ways they can go about their journalism in the future. Each year, students partner with different groups and organisations, addressing different themes each time the project runs. For 2016, the programme proposes to develop the project in a new way, by not just exploring a community’s stories but also exploring its media needs and it aims to work with Christchurch’s new migrant Filipino community to develop the groundwork for a community media and/or communication platform, which Filipino community leaders say is a pressing need. For this iteration, journalism students will be set further research tasks aimed at deepening their ‘public listening’: they will conduct a survey of community members’ media use and needs as well as qualitative research interviews. It is hoped that the data collected will strengthen students’ understanding of their own journalism practice, as well as form the basis for work on developing media tools for minority groups who are generally poorly represented in mainstream media. In 2015, the journalism programme surveyed its community partners and held follow-up interviews with 13 of 18 story subjects to elicit further feedback on its news content and thereby deepen understanding of different community viewpoints. The survey and interview data revealed the project affected story subjects in a number of positive and interesting ways. Subjects said they appreciated the way student reporters took their time to build relationships and understand the context of the community groups with which they were involved, and contrasted this with their experience of professional journalists who had held pre-conceived assumptions about stories and/or rushed into interviews. As a direct consequence of the students’ approach, participants said they better trusted the student journalists to portray them accurately and fairly. Most were also encouraged by the positive recognition stories brought and several said the engagement process had helped their personal development, all of which had spin-offs for their community efforts. The presentation night that wraps up each year’s project, where community groups, story subjects and students come together to network and share the final stories, was cited as a significant positive aspect of the project and a great opportunity for community partners to connect with others doing similar work. Community feedback will be sought in future projects to inform and improve successive iterations.

Research papers, University of Canterbury Library

This thesis is concerned with the effects of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns. The contents of the chapters are summarized as follows. In Chapter one, the general problems in seismic design are discussed and earthquake design methods based on the ductile design approach are described. Japanese, New Zealand and United States design codes are compared. Finally, the scope of this research project is outlined. In Chapter two, after reviewing previous research on confined concrete, the factors which affect the effectiveness of lateral confinement are discussed. Especially the effects of the yield strength of transverse reinforcement, the compressive strength of plain concrete and the strain gradient in the column section due to bending are discussed based on tests which were conducted by the author et al at Kyoto University and Akashi Technological College, Japan. In the axial compression tests on spirally reinforced concrete cylinders (150 mm in diameter by 300 mm in height), the yield strength of transverse reinforcement and the compressive strength of plain concrete were varied from 161 MPa to 1352 MPa and from 17 MPa to 60 MPa, respectively, as experimental parameters. It is found that, when high strength spirals are used as confining reinforcement, the strength and ductility of the confined core concrete are remarkably enhanced but need to be estimated assuming several failure modes which could occur. These are based on the observations that concrete cylinders with high strength spirals suddenly failed at a concrete compressive strain of 2 to 3.5 % due to explosive crushing of the core concrete between the spiral bars or due to bearing failure of the core concrete immediately beneath the spiral bars, while the concrete cylinders with ordinary strength spirals failed in a gentle manner normally observed. In addition, eccentric loading tests were conducted on concrete columns with 200 mm square section confined by square spirals. It is found that the effectiveness of confining reinforcement is reduced by the presence of the strain gradient along the transverse section of column. In Chapter three, the effectiveness of transverse reinforcement with various types of anchorage details which simplify the fabrication of reinforcing cages are investigated. Eight reinforced concrete columns, with either 400 mm or 550 mm square cross sections, were tested subjected to axial compression loading and cyclic lateral loading which simulated a severe earthquake. The transverse reinforcement consisted of arrangements of square perimeter hoops with 135° end hooks, cross ties with 90° and 135° or 180° end hooks, and 'U' and 'J' shaped cross ties and perimeter hoops with tension splices. Conclusions are reached with regard to the effectiveness of the tested anchorage details in the plastic hinge regions of columns designed for earthquake resistance. In Chapter four, the effectiveness of interlocking spirals as transverse reinforcement is studied. Firstly, the general aspects and the related problems of interlocking spirals to provide adequate ductility in the potential plastic hinge region of columns are discussed, referring to the provisions in the New Zealand code,the CALTRANS (California Transportation Authority) code and other related codes. Secondly, based on those discussions, a design method to securely interlock the spirals is proposed. Thirdly, the effectiveness of interlocking spirals is assessed based on column tests conducted as part of this study. Three columns with interlocking spirals and, for comparison, one rectangular column with rectangular hoopsandcross ties, were tested under cyclic horizontal loading which simulated a severe earthquake. The sections of those columns were 400 mm by 600 mm. In Chapter five, analytical models to investigate the buckling behaviour of longitudinal reinforcement restrained by cross ties with 90° and 135° end hooks and by peripheral hoops are proposed. The analyzed results using the proposed models compare well with the experimental observations described in Chapter three. Using those proposed models, a method to check the effectiveness of cross ties with 90° and 135° end hooks is proposed for practical design purposes. In Chapter six, a theory for the prediction of the ultimate longitudinal compressive concrete strain at the stage of first hoop fracture referred to as the "Energy Balance Theory", which has been developed by Mander, Priestley and Park at University of Canterbury, is introduced. After discussing the problems in the "Energy Balance Theory", a modified theory for the prediction of the ultimate longitudinal compressive concrete strain at the stage of first hoop fracture is proposed. The predictions from the modified theory are found to compare well with previous experimental results.

Research papers, University of Canterbury Library

Rock mass defect controlled deep-seated landslides are widespread within the deeply incised landscapes formed in Tertiary soft rock terrain in New Zealand. The basal failure surfaces of deep-seated slope failures are defined by thin, comparatively weak and laterally continuous bedding parallel layers termed critical stratigraphic horizons. These horizons have a sedimentary origin and have typically experienced some prior tectonically induced shear displacement at the time of slope failure. The key controls on the occurrence and form of deep-seated landslides are considered in terms of rock mass defect properties and tectonic and climatic forcing. The selection of two representative catchments (in southern Hawke's Bay and North Canterbury) affected by tectonic and climatic forcing has shown that the spatial and temporal initiation of deep-seated bedrock landslides in New Zealand Tertiary soft rock terrain is a predictable rather than a stochastic process; and that deep-seated landslides as a mass wasting process have a controlling role in landscape evolution in many catchments formed in Tertiary soft rock terrain. The Ella Landslide in North Canterbury is a deep-seated (~85 m) translational block slide that has failed on a 5 - 10 mm thick, kaolinite-rich, pre-sheared critical stratigraphic horizon. The residual strength of this sedimentary horizon, (C'R 2.6 - 2.7 kPa, and Ѳ'R = 16 - 21°), compared to the peak strength of the dominant lithology (C' = 176 kPa, and Ѳ' = 37°) defines a high strength contrast in the succession, and therefore a critical location for the basal failure surface of deep-seated slope failures. The (early to mid Holocene) Ella Landslide debris formed a large landslide dam in the Kate Stream catchment and this has significantly retarded rates of mass wasting in the middle catchment. Numerical stability analysis shows that this slope failure would have most likely required the influence of earthquake induced strong ground motion and the event is tentatively correlated to a Holocene event on the Omihi Fault. The influence of this slope failure is likely to affect the geomorphic development of the catchment on a scale of 10⁴ - 10⁵ years. In deeply incised catchments at the southeastern margin of the Maraetotara Plateau, southern Hawke's Bay, numerous widespread deep-seated landslides have basal failure surfaces defined by critical stratigraphic horizons in the form of thin « 20 mm) tuffaceous beds in the Makara Formation flysch (alternating sandstone and mudstone units). The geometry of deep-seated slope failures is controlled by these regularly spaced (~70 m), very weak critical stratigraphic horizons (C'R 3.8 - 14.2 kPa, and Ѳ'R = 2 - 5°), and regularly spaced (~45 m) and steeply dipping (-50°) critical conjugate joint/fault sets, which act as slide block release surfaces. Numerical stability analysis and historical precedent show that the temporal initiation of deep-seated landslides is directly controlled by short term tectonic forcing in the form of periodic large magnitude earthquakes. Published seismic hazard data shows the recurrence interval of earthquakes producing strong ground motions of 0.35g at the study site is every 150 yrs, however, if subduction thrust events are considered the level of strong ground motion may be much higher. Multiple occurrences of deep-seated slope failure are correlated to failure on the same critical stratigraphic horizon, in some cases in three adjacent catchments. Failure on multiple critical stratigraphic horizons leads to the development of a "stepped" landscape morphology. This slope form will be maintained during successive accelerated stream incision events (controlled by long term tectonic and climatic forcing) for as long as catchments are developing in this specific succession. Rock mass defect controlled deep seated landslides are controlling catchment head progression, landscape evolution and hillslope morphology in the Hawke's Bay study area and this has significant implications for the development of numerical landscape evolution models of landscapes formed in similar strata. Whereas the only known numerical model to consider deep seated landslides as an erosion process (ZSCAPE) considers them as stochastic in time and space, this study shows that this could not be applied to a landscape where the widespread spatial occurrence of deep-seated landslides is controlled by rock mass defects. In both of the study areas for this project, and by implication in many catchments in Tertiary soft rock terrain, deep-seated landslides controlled by rock mass defect strength, spacing and orientation, and tectonic and climatic forcing have an underlying control on landscape evolution. This study quantifies parameters for the development of numerical landscape evolution models that would assess the role of specific parameters, such as uplift rates, incision rates and earthquake recurrence in catchment evolution in Tertiary soft rock terrain.

Images, eqnz.chch.2010

The small wharf area of the now gone Pleasant Point Yacht Club has already been taken over by the Pied Shags (cormorants). It is under water now except for low tide. Note the dead pine tree in background. Many have died because of the salt water their roots are in.

Research Papers, Lincoln University

Prognostic modelling provides an efficient means to analyse the coastal environment and provide effective knowledge for long term urban planning. This paper outlines how the use of SWAN and Xbeach numerical models within the ESRI ArcGIS interface can simulate geomorphological evolution through hydrodynamic forcing for the Greater Christchurch coastal environment. This research followed the data integration techniques of Silva and Taborda (2012) and utilises their beach morphological modelling tool (BeachMM tool). The statutory requirements outlined in the New Zealand Coastal Policy Statement 2010 were examined to determine whether these requirements are currently being complied with when applying the recent sea level rise predictions by the Intergovernmental Panel on Climate Change (2013), and it would appear that it does not meet those requirements. This is because coastal hazard risk has not been thoroughly quantified by the installation of the Canterbury Earthquake Recovery Authority (CERA) residential red zone. However, the Christchurch City Council’s (CCC) flood management area does provide an extent to which managed coastal retreat is a real option. This research assessed the effectiveness of the prognostic models, forecasted a coastline for 100 years from now, and simulated the physical effects of extreme events such as storm surge given these future predictions. The results of this research suggest that progradation will continue to occur along the Christchurch foreshore due to the net sediment flux retaining an onshore direction and the current hydrodynamic activity not being strong enough to move sediment offshore. However, inundation during periods of storm surge poses a risk to human habitation on low lying areas around the Avon-Heathcote Estuary and the Brooklands lagoon similar to the CCC’s flood management area. There are complex interactions at the Waimakariri River mouth with very high rates of accretion and erosion within a small spatial scale due to the river discharge. There is domination of the marine environment over the river system determined by the lack of generation of a distinct river delta, and river channel has not formed within the intertidal zone clearly. The Avon-Heathcote ebb tidal delta aggrades on the innner fan and erodes on the outer fan due to wave domination. The BeachMM tool facilitates the role of spatial and temporal analysis effectively and the efficiency of that performance is determined by the computational operating system.

Research papers, University of Canterbury Library

For the people of Christchurch and its wider environs of Canterbury in New Zealand, the 4th of September 2010 earthquake and the subsequent aftershocks were daunting. To then experience a more deadly earthquake five months later on the 22nd of February 2011 was, for the majority, overwhelming. A total of 185 people were killed and the earthquake and continuing aftershocks caused widespread damage to properties, especially in the central city and eastern suburbs. A growing body of literature consistently documents the negative impact of experiencing natural disasters on existing psychological disorders. As well, several studies have identified positive coping strategies which can be used in response to adversities, including reliance on spiritual and cultural beliefs as well as developing resilience and social support. The lifetime prevalence of severe mental health disorders such as posttraumatic stress disorder (PTSD) occurring as a result of experiencing natural disasters in the general population is low. However, members of refugee communities who were among those affected by these earthquakes, as well as having a past history of experiencing traumatic events, were likely to have an increased vulnerability. The current study was undertaken to investigate the relevance to Canterbury refugee communities of the recent Canterbury Earthquake Recovery Authority (CERA) draft recovery strategy for Christchurch post-earthquakes. This was accomplished by interviewing key informants who worked closely with refugee communities. These participants were drawn from different agencies in Christchurch including Refugee Resettlement Services, the Canterbury Refugee Council, CERA, and health promotion and primary healthcare organisations, in order to obtain the views of people who have comprehensive knowledge of refugee communities as well as expertise in local mainstream services. The findings from the semi-structured interviews were analysed using qualitative thematic analysis to identify common themes raised by the participants. The key informants described CERA’s draft recovery strategy as a significant document which highlighted the key aspects of recovery post disaster. Many key informants identified concerns regarding the practicality of the draft recovery strategy. For the refugee communities, some of those concerns included the short consultation period for the implementation phase of the draft recovery strategy, and issues surrounding communication and collaboration between refugee agencies involved in the recovery. This study draws attention to the importance of communication and collaboration during recovery, especially in the social reconstruction phase following a disaster, for all citizens but most especially for refugee communities.

Research papers, University of Canterbury Library

The effects of soil-foundation-structure interaction (SFSI) have been a topic of discussion amongst the structural and geotechnical community for many decades. The complexity of the mechanisms, as well as the need for inter-disciplinary knowledge of geotechnical and structural dynamics has plagued the advancement and the consequent inclusion of SFSI effects in design. A rigorous performance-based design methodology should not just consider the performance of the superstructure but the supporting foundation system as well. Case studies throughout history (eg. Kobe 1995, Kocaeli 1999 and Christchurch earthquakes 2010-2011) have demonstrated that a poor performance at the foundation level can result in a full demolition of the structure and, in general terms, that the extent of damage to, and repairability of, the building system as a whole, is given by the combination of the damage to the soil, foundation and superstructure. The lack of consideration of the modifying factors of SFSI and an absence of intuitive performance levels for controlling foundation and soil behaviour under seismic loads has resulted in inadequate designs for buildings sited on soft soil. For engineers to be satisfied that their designs meet the given performance levels they must first, understand how SFSI affects the overall system performance and secondly have tools available to adequately account for it in their design/assessment. This dissertation presents an integrated performance-based design procedure for buildingfoundation systems that considers all of the major mechanisms of SFSI. A new soil-foundation macro-element model was implemented into a nonlinear finite element software and validated against several experimental tests. The numerical model was used to provide insights in to the mechanisms of SFSI and statistical analysis on the results yielded simple expressions that allow the behaviour to be quantified. Particular attention was paid to the effects of shear force on the foundation response and the quantification of the rocking mode of response. The residual deformations of the superstructure and distribution of forces up the structure were also investigated. All of the major SFSI mechanisms are discussed in detail and targeted numerical studies are used to explain and demonstrate concepts. The design procedure was validated through the design and assessment of a series of concrete buildings that were designed to account for the effects of SFSI.

Research papers, University of Canterbury Library

Voluntary turnover has been the subject of scholarly inquiry for more than 100 years and much is understood about the drivers of turnover, and the decision-making processes involved. To date most models of voluntary turnover have assumed a rational and sequential decision process, initiated primarily by dissatisfaction with the job and the perceived availability of alternatives. Operating within a strong predictive research agenda, countless studies have sought to validate, extend and refine these traditional models through the addition of distal antecedents, mediators, moderators, and proximal antecedents of turnover. The net result of this research is a large body of empirical support for a somewhat modest relationship between job dissatisfaction, perceived alternatives, turnover intentions, job search behaviour and actual turnover. Far less scholarly attention has been directed at understanding shock-induced turnover that is not necessarily derived from dissatisfaction. Moreover, almost no consideration has been given to understanding how a significant and commonly experienced extra-organisational shock, such as natural disaster, might impact turnover decision making. Additionally, the dynamic and cumulative impacts of multiple shocks on turnover decision making have to date not been examined by turnover researchers. In addressing these gaps this thesis presents a leaver-centric theory of employee turnover decision making that is grounded in the post-disaster context. Data for the study were collected from in-depth interviews with 31 leavers in four large organisations in Christchurch, New Zealand; an area that experienced a major natural disaster in the form of the Canterbury earthquake sequence. This context provided a unique setting in which to study turnover as the primary shock was followed by a series of smaller shocks, resulting in a period of sustained disruption to the pre-shock status quo. Grounded theory methods are used to develop a typology of leaving which describes four distinct patterns of turnover decision making that follow a significant extra-organisational shock. The proposed typology not only addresses the heterogeneous and complex nature of turnover decision making, but also provides a more nuanced explanation of the turnover process explicating how the choice of decision path followed is influenced by four contextual factors which emerged from the data: (1) pre-shock motivational state; (2) decision difficulty; (3) experienced shock magnitude; and (4) the availability of resources. The research findings address several shortcomings in the extant literature on employee turnover, and offer practical recommendations for managers seeking to retain employees in a post-disaster setting.

Research papers, University of Canterbury Library

To reduce seismic vulnerability and the economic impact of seismic structural damage, it is important to protect structures using supplemental energy dissipation devices. Several types of supplemental damping systems can limit loads transferred to structures and absorb significant response energy without sacrificial structural damage. Lead extrusion dampers are one type of supplemental energy dissipation devices. A smaller volumetric size with high force capacities, called high force to volume (HF2V) devices, have been employed in a large series of scaled and full-scaled experiments, as well as in three new structures in Christchurch and San Francisco. HF2V devices have previously been designed using very simple models with limited precision. They are then manufactured, and tested to ensure force capacities match design goals, potentially necessitating reassembly or redesign if there is large error. In particular, devices with a force capacity well above or below a design range can require more testing and redesign, leading to increased economic and time cost. Thus, there is a major need for a modelling methodology to accurately estimate the range of possible device force capacity values in the design phase – upper and lower bounds. Upper and lower bound force capacity estimates are developed from equations in the metal extrusion literature. These equations consider both friction and extrusion forces between the lead and the bulged shaft in HF2V devices. The equations for the lower and upper bounds are strictly functions of device design parameters ensuring easy use in the design phase. Two different sets of estimates are created, leading to estimates for the lower and upper bounds denoted FLB,1, FUB,1, FUB,2, respectively. The models are validated by comparing the bounds with experimental force capacity data from 15 experimental HF2V device tests. All lower bound estimates are below or almost equal to the experimental device forces, and all upper bound estimates are above. Per the derivation, the (FLB,1, FUB,1) pair provide narrower bounds. The (FLB,1, FUB,1) pair also had a mean lower bound gap of -34%, meaning the lower bound was 74% of device force on average, while the mean upper bound gap for FUB,1 was +23%. These are relatively tight bounds, within ~±2 SE of device manufacture, and can be used as a guide to ensure device forces are in range for the actual design use when manufactured. Therefore, they provide a useful design tool.

Research papers, University of Canterbury Library

Floor systems with precast concrete hollow-core units have been largely used in concrete buildings built in New Zealand during the 1980’s. Recent earthquakes, such as the Canterbury sequence in 2010-2011 and the Kaikoura earthquake in 2016, highlighted that this floor system can be highly vulnerable and potentially lead to the floor collapse. A series of research activities are in progress to better understand the seismic performance of floor diaphragms, and this research focuses on examining the performance of hollow core units running parallel to the walls of wall-resisting concrete structures. This study first focused on the development of fragility functions, which can be quickly used to assess likelihood of the hollow-core being able to survive given the buildings design drift, and secondly to determine the expected performance of hollow-core units that run parallel to walls, focusing on the alpha unit running by the wall. Fragility functions are created for a range of different parameters for both vertical dislocation and crack width that can be used as the basis of a quick analysis or loss estimation for the likely impact of hollow-core floors on building vulnerability and risk. This was done using past experimental tests, and the recorded damage. Using these results and the method developed by Baker fragility curves were able to be created for varying crack widths and vertical dislocations. Current guidelines for analysis of hollow-core unit incompatible displacements are based on experimental vertical displacement results from concrete moment resisting frame systems to determine the capacity of hollow-core elements. To investigate the demands on hollow-core units in a wall-based structure, a fibre-element model in the software Seismostruct is created and subject to quasi-static cyclic loading, using elements which are verified from previous experimental tests. It is shown that for hollow-core units running by walls that the 10 mm displacement capacity used for hollow-core units running by a beam is insufficient for members running by walls and that shear analysis should be used. The fibre-element model is used to simulate the seismic demand induced on the floor system and has shown that the shear demand is a function of drift, wall length, hollow-core span, linking slab length and, to a minor extent, wall elongation.

Research papers, University of Canterbury Library

Researchers have begun to explore the opportunity presented by blue-green infrastructure(a subset of nature-based solutions that provide blue and green space in urban infrastructure)as a response to the pressures of climate change. The 2010/2011 Canterbury earthquake sequence created a unique landscape within which there is opportunity to experiment with and invest in new solutions to climate change adaptation in urban centres. Constructed wetlands are an example of blue-green infrastructure that can potentially support resilience in urban communities. This research explores interactions between communities and constructed wetlands to understand how this may influence perceptions of community resilience. The regeneration of the Ōtākaro Avon River Corridor (OARC) provides a space to investigate these relationships. Seven stakeholders from the community, industry, and academia, each with experience in blue-green infrastructure in the OARC, participated in a series of semi-structured interviews. Each participant was given the opportunity to reflect on their perspectives of community, community resilience, and constructed wetlands and their interconnections. Interview questions aligned with the overarching research objectives to (1) understand perceptions around the role of wetlands in urban communities, (2) develop a definition for community resilience in the context of the Ōtākaro Avon community, and (3) reflect on how wetlands can contribute to (or detract from) community resilience. This study found that constructed wetlands can facilitate learning about the challenges and solutions needed to adapt to climate change. From the perspective of the community representatives, community resilience is linked to social capital. Strong social networks and a relationship with nature were emphasised as core components of a community’s ability to adapt to disruption. Constructed wetlands are therefore recognised as potentially contributing to community resilience by providing spaces for people to engage with each other and nature. Investment in constructed wetlands can support a wider response to climate change impacts. This research was undertaken with the support of the Ōtākaro Living Laboratory Trust, who are invested in the future of the OARC. The outcomes of this study suggest that there is an opportunity to use wetland spaces to establish programmes that explore the perceptions of constructed wetlands from a broader community definition, at each stage of the wetland life cycle, and at wider scales(e.g., at a city scale or beyond).

Research papers, University of Canterbury Library

Non-structural elements (NSEs) have frequently proven to contribute to significant losses sustained from earthquakes in the form of damage, downtime, injury and death. In New Zealand (NZ), the 2010 and 2011 Canterbury Earthquake Sequence (CES), the 2013 Seddon and Cook Strait earthquake sequence and the 2016 Kaikoura earthquake were major milestones in this regard as significant damage to building NSEs both highlighted and further reinforced the importance of NSE seismic performance to the resilience of urban centres. Extensive damage in suspended ceilings, partition walls, façades and building services following the CES was reported to be partly due to erroneous seismic design or installation or caused by intervening elements. Moreover, the low-damage solutions developed for structural systems sometimes allow for relatively large inter-story drifts -compared to conventional designs- which may not have been considered in the seismic design of NSEs. Having observed these shortcomings, this study on suspended ceilings was carried out with five main goals: i) Understanding the seismic performance of the system commonly used in NZ; ii) Understanding the transfer of seismic design actions through different suspended ceiling components, iii) Investigating potential low-damage solutions; iii) Evaluating the compatibility of the current ceiling system with other low-damage NSEs; and iv) Investigating the application of numerical analysis to simulate the response of ceiling systems. The first phase of the study followed a joint research work between the University of Canterbury (UC) in NZ, and the Politecnico Di Milano, in Italy. The experimental ceiling component fragility curves obtained in this existing study were employed to produce analytical fragility curves for a perimeter-fixed ceiling of a given size and weight, with grid acceleration as the intensity measure. The validity of the method was proven through comparisons between this proposed analytical approach with the recommended procedures in proprietary products design guidelines, as well as experimental fragility curves from other studies. For application to engineering design practice, and using fragility curves for a range of ceiling lengths and weights, design curves were produced for estimating the allowable grid lengths for a given demand level. In the second phase of this study, three specimens of perimeter-fixed ceilings were tested on a shake table under both sinusoidal and random floor motion input. The experiments considered the relationship between the floor acceleration, acceleration of the ceiling grid, the axial force induced in the grid members, and the effect of boundary conditions on the transfer of these axial forces. A direct correlation was observed between the axial force (recorded via load cells) and the horizontal acceleration measured on the ceiling grid. Moreover, the amplification of floor acceleration, as transferred through ceiling components, was examined and found (in several tests) to be greater than the recommended factor for the design of ceilings provided in the NZ earthquake loadings standard NZS1170.5. However, this amplification was found to be influenced by the pounding interactions between the ceiling grid members and the tiles, and this amplification diminished considerably when the high frequency content was filtered out from the output time histories. The experiments ended with damage in the ceiling grid connection at an axial force similar to the capacity of these joints previously measured through static tests in phase one. The observation of common forms of damage in ceilings in earthquakes triggered the monotonic experiments carried out in the third phase of this research with the objective of investigating a simple and easily applicable mitigation strategy for existing or new suspended ceilings. The tests focused on the possibility of using proprietary cross-shaped clip elements ordinarily used to provide seismic gap as a strengthening solution for the weak components of a ceiling. The results showed that the solution was effective under both tension and compression loads through increasing load bearing capacity and ductility in grid connections. The feasibility of a novel type of suspended ceiling called fully-floating ceiling system was investigated through shaking table tests in the next phase of this study with the main goal of isolating the ceiling from the surrounding structure; thereby arresting the transfer of associated seismic forces from the structure to the ceiling. The fully-floating ceiling specimen was freely hung from the floor above lacking any lateral bracing and connections with the perimeter. Throughout different tests, a satisfactory agreement between the fully-floating ceiling response and simple pendulum theory was demonstrated. The addition of isolation material in perimeter gaps was found effective in inducing extra damping and protecting the ceiling from pounding impact; resulting in much reduced ceiling displacements and accelerations. The only form of damage observed throughout the random floor motion tests and the sinusoidal tests was a panel dislodgement observed in a test due to successive poundings between the ceiling specimen and the surrounding beams at resonant frequencies. Partition walls as the first effective NSE in direct interaction with ceilings were the topic of the final experimental phase. Low-damage drywall partitions proposed in a previous study in the UC were tested with two common forms of suspended ceiling: braced and perimeter-fixed. The experiments investigated the in-plane and out-of-plane performance of the low-damage drywall partitions, as well as displacement compatibility between these walls and the suspended ceilings. In the braced ceiling experiment, where no connection was made between ceiling grids and surrounding walls no damage in the grid system or partitions was observed. However, at high drift values panel dislodgement was observed on corners of the ceiling where the free ends of grids were not restrained against spreading. This could be prevented by framing the grid ends using a perimeter angle that is riveted only to the grid members while keeping sufficient clearance from the perimeter walls. In the next set of tests with the perimeter-fixed ceiling, no damage was observed in the ceiling system or the drywalls. Based on the results of the experiments it was concluded that the tested ceiling had enough flexibility to accommodate the relative displacement between two perpendicular walls up to the inter-storey drifts achieved. The experiments on perimeter-fixed ceilings were followed by numerical simulations of the performance of these ceilings in a finite element model developed in the structural analysis software, SAP2000. This model was relatively simple and easy to develop and was able to replicate the experimental results to a reasonable degree. Filtering was applied to the experimental output to exclude the effect of high frequency noise and tile-grid impact. The developed model generally simulated the acceleration responses well but underestimated the peak ceiling grid accelerations. This was possibly because the peak values in time histories were affected by impact occurring at very short periods. The model overestimated the axial forces in ceiling grids which was assumed to be caused by the initial assumptions made about the tributary area or constant acceleration associated with each grid line in the direction of excitation. Otherwise, the overall success of the numerical modelling in replicating the experimental results implies that numerical modelling using conventional structural analysis software could be used in engineering practice to analyse alternative ceiling geometries proposed for application to varying structural systems. This however, needs to be confirmed through similar analyses on other ceiling examples from existing instrumented buildings during real earthquakes. As the concluding part of this research the final phase addressed the issues raised following the review of existing ceiling standards and guidelines. The applicability of the research findings to current practice and their implications were discussed. Finally, an example was provided for the design of a suspended ceiling utilising the new knowledge acquired in this research.

Research papers, University of Canterbury Library

In 2010 and 2011 Christchurch, New Zealand experienced a series of earthquakes that caused extensive damage across the city, but primarily to the Central Business District (CBD) and eastern suburbs. A major feature of the observed damage was extensive and severe soil liquefaction and associated ground damage, affecting buildings and infrastructure. The behaviour of soil during earthquake loading is a complex phenomena that can be most comprehensively analysed through advanced numerical simulations to aid engineers in the design of important buildings and critical facilities. These numerical simulations are highly dependent on the capabilities of the constitutive soil model to replicate the salient features of sand behaviour during cyclic loading, including liquefaction and cyclic mobility, such as the Stress-Density model. For robust analyses advanced soil models require extensive testing to derive engineering parameters under varying loading conditions for calibration. Prior to this research project little testing on Christchurch sands had been completed, and none from natural samples containing important features such as fabric and structure of the sand that may be influenced by the unique stress-history of the deposit. This research programme is focussed on the characterisation of Christchurch sands, as typically found in the CBD, to facilitate advanced soil modelling in both res earch and engineering practice - to simulate earthquake loading on proposed foundation design solutions including expensive ground improvement treatments. This has involved the use of a new Gel Push (GP) sampler to obtain undisturbed samples from below the ground-water table. Due to the variable nature of fluvial deposition, samples with a wide range of soil gradations, and accordingly soil index properties, were obtained from the sampling sites. The quality of the samples is comprehensively examined using available data from the ground investigation and laboratory testing. A meta-quality assessment was considered whereby a each method of evaluation contributed to the final quality index assigned to the specimen. The sampling sites were characterised with available geotechnical field-based test data, primarily the Cone Penetrometer Test (CPT), supported by borehole sampling and shear-wave velocity testing. This characterisation provides a geo- logical context to the sampling sites and samples obtained for element testing. It also facilitated the evaluation of sample quality. The sampling sites were evaluated for liquefaction hazard using the industry standard empirical procedures, and showed good correlation to observations made following the 22 February 2011 earthquake. However, the empirical method over-predicted liquefaction occurrence during the preceding 4 September 2010 event, and under-predicted for the subsequent 13 June 2011 event. The reasons for these discrepancies are discussed. The response of the GP samples to monotonic and cyclic loading was measured in the laboratory through triaxial testing at the University of Canterbury geomechanics laboratory. The undisturbed samples were compared to reconstituted specimens formed in the lab in an attempt to quantify the effect of fabric and structure in the Christchurch sands. Further testing of moist tamped re- constituted specimens (MT) was conducted to define important state parameters and state-dependent properties including the Critical State Line (CSL), and the stress-strain curve for varying state index. To account for the wide-ranging soil gradations, selected representative specimens were used to define four distinct CSL. The input parameters for the Stress-Density Model (S-D) were derived from a suite of tests performed on each representative soil, and with reference to available GP sample data. The results of testing were scrutinised by comparing the data against expected trends. The influence of fabric and structure of the GP samples was observed to result in similar cyclic strength curves at 5 % Double Amplitude (DA) strain criteria, however on close inspection of the test data, clear differences emerged. The natural samples exhibited higher compressibility during initial loading cycles, but thereafter typically exhibited steady growth of plastic strain and excess pore water pressure towards and beyond the strain criteria and initial liquefaction, and no flow was observed. By contrast the reconstituted specimens exhibited a stiffer response during initial loading cycles, but exponential growth in strains and associated excess pore water pressure beyond phase-transformation, and particularly after initial liquefaction where large strains were mobilised in subsequent cycles. These behavioural differences were not well characterised by the cyclic strength curve at 5 % DA strain level, which showed a similar strength for both GP samples and MT specimens. A preliminary calibration of the S-D model for a range of soil gradations is derived from the suite of laboratory test data. Issues encountered include the influence of natural structure on the peak-strength–state index relationship, resulting in much higher peak strengths than typically observed for sands in the literature. For the S-D model this resulted in excessive stiffness to be modelled during cyclic mobility, when the state index becomes large momentarily, causing strain development to halt. This behaviour prevented modelling the observed re- sponse of silty sands to large strains, synonymous with “liquefaction”. Efforts to reduce this effect within the current formulation are proposed as well as future research to address this issue.

Research papers, University of Canterbury Library

Background The 2010/2011 Canterbury earthquakes and aftershocks in New Zealand caused unprecedented destruction to the physical, social, economic, and community fabric of Christchurch city. The recovery phase in Christchurch is on going, six years following the initial earthquake. Research exploring how disabled populations experience community inclusion in the longer-term recovery following natural disasters is scant. Yet such information is vital to ensure that recovering communities are inclusive for all members of the affected population. This thesis specifically examined how people who use wheelchairs experienced community inclusion four years following the 2010/2011 Canterbury earthquakes. Aims The primary research aim was to understand how one section of the disability community – people who use wheelchairs – experienced community inclusion over the four years following the 2010/2011 Canterbury earthquakes and aftershocks. A secondary aim was to test a novel sampling approach, Respondent Driven Sampling, which had the potential to enable unbiased population-based estimates. This was motivated by the lack of an available sampling frame for the target population, which would inhibit recruitment of a representative sample. Methodology and methods An exploratory sequential mixed methods design was used, beginning with a qualitative phase (Phase One), which informed a second quantitative phase (Phase Two). The qualitative phase had two stages. First, a small sample of people who use wheelchairs participated in an individual, semi-structured interview. In the second stage, these participants were then invited to a group interview to clarify and prioritise themes identified in the individual interviews. The quantitative phase was a cross-sectional survey developed from the findings from Phase One. Initially, Respondent Driven Sampling was employed to conduct a national, electronic cross-sectional survey that aimed to recruit a sample that may provide unbiased population-based estimates. Following the unsuccessful application of Respondent Driven Sampling, a region-specific convenience sampling approach was used. The datasets from the qualitative and quantitative phases were integrated to address the primary aim of the research. Results In Phase One 13 participants completed the individual interviews, and five of them contributed to the group interview. Thematic analysis of individual and group interview data suggested that participants felt the 2010/11 earthquakes magnified many pre-existing barriers to community inclusion, and also created an exciting opportunity for change. This finding was encapsulated in five themes: 1) earthquakes magnified barriers, 2) community inclusion requires energy, 3) social connections are important, 4) an opportunity lost, and 5) an opportunity found. The findings from Phase One informed the development of a survey instrument to investigate how these findings generalised to a larger sample of individuals who use wheelchairs. In Phase Two, the Respondent Driven Sampling approach failed to recruit enough participants to satisfy the statistical requirements needed to reach equilibrium, thereby enabling the calculation of unbiased population estimates. The subsequent convenience sampling approach recruited 49 participants who, combined with the 15 participants from the Respondent Driven Sampling approach that remained eligible for the region-specific sample, resulted in the total of 64 individuals who used wheelchairs and were residents of Christchurch. Participants reported their level of community inclusion at three time periods: the six months prior to the first earthquake in September 2010 (time one), the six months following the first earthquake in September 2010 (time two), and the six months prior to survey completion (between October 2015 and March 2016, (time three)). Survey data provided some precision regarding the timing in which the magnified barriers developed. Difficulty with community inclusion rose significantly between time one and time two, and while reducing slightly, was still present during time three, and had not returned to the time one baseline. The integrated findings from Phase One and Phase Two suggested that magnified barriers to community inclusion had been sustained four years post-earthquake, and community access had not returned to pre-earthquake levels, let alone improved beyond pre-earthquake levels. Conclusion Findings from this mixed methods study suggest that four years following the initial earthquake, participants were still experiencing multiple magnified barriers, which contributed to physical and social exclusion, as well as fatigue, as participants relied on individual agency to negotiate such barriers. Participants also highlighted the exciting opportunity to create an accessible city. However because they were still experiencing barriers four years following the initial event, and were concerned that this opportunity might be lost if the recovery proceeds without commitment and awareness from the numerous stakeholders involved in guiding the recovery. To truly realise the opportunity to create an accessible city following a disaster, the transition from the response phase to a sustainable longer-term recovery must adopt a new model of community engagement where decision-makers partner with people living with disability to co-produce a vision and strategy for creating an inclusive community. Furthermore, despite the unsuccessful use of Respondent Driven Sampling in this study, future research exploring the application of RDS with wheelchair users is recommended before discounting this sampling approach in this population.

Research papers, University of Canterbury Library

One of the great challenges facing human systems today is how to prepare for, manage, and adapt successfully to the profound and rapid changes wreaked by disasters. Wellington, New Zealand, is a capital city at significant risk of devastating earthquake and tsunami, potentially requiring mass evacuations with little or short notice. Subsequent hardship and suffering due to widespread property damage and infrastructure failure could cause large areas of the Wellington Region to become uninhabitable for weeks to months. Previous research has shown that positive health and well-being are associated with disaster-resilient outcomes. Preventing adverse outcomes before disaster strikes, through developing strengths-based skill sets in health-protective attitudes and behaviours, is increasingly advocated in disaster research, practise, and management. This study hypothesised that well-being constructs involving an affective heuristic play vital roles in pathways to resilience as proximal determinants of health-protective behaviours. Specifically, this study examined the importance of health-related quality of life and subjective well-being in motivating evacuation preparedness, measured in a community sample (n=695) drawn from the general adult population of Wellington’s isolated eastern suburbs. Using a quantitative epidemiological approach, the study measured the prevalence of key quality of life indicators (physical and mental health, emotional well-being or “Sense of Coherence”, spiritual well-being, social well-being, and life satisfaction) using validated psychometric scales; analysed the strengths of association between these indicators and the level of evacuation preparedness at categorical and continuous levels of measurement; and tested the predictive power of the model to explain the variance in evacuation preparedness activity. This is the first study known to examine multi-dimensional positive health and global well-being as resilient processes for engaging in evacuation preparedness behaviour. A cross-sectional study design and quantitative survey were used to collect self-report data on the study variables; a postal questionnaire was fielded between November 2008 and March 2009 to a sampling frame developed through multi-stage cluster randomisation. The survey response rate was 28.5%, yielding a margin of error of +/- 3.8% with 95% confidence and 80% statistical power to detect a true correlation coefficient of 0.11 or greater. In addition to the primary study variables, data were collected on demographic and ancillary variables relating to contextual factors in the physical environment (risk perception of physical and personal vulnerability to disaster) and the social environment (through the construct of self-determination), and other measures of disaster preparedness. These data are reserved for future analyses. Results of correlational and regression analyses for the primary study variables show that Wellingtonians are highly individualistic in how their well-being influences their preparedness, and a majority are taking inadequate action to build their resilience to future disaster from earthquake- or tsunami-triggered evacuation. At a population level, the conceptual multi-dimensional model of health-related quality of life and global well-being tested in this study shows a positive association with evacuation preparedness at statistically significant levels. However, it must be emphasised that the strength of this relationship is weak, accounting for only 5-7% of the variability in evacuation preparedness. No single dimension of health-related quality of life or well-being stands out as a strong predictor of preparedness. The strongest associations for preparedness are in a positive direction for spiritual well-being, emotional well-being, and life satisfaction; all involve a sense of existential meaningfulness. Spiritual well-being is the only quality of life variable making a statistically significant unique contribution to explaining the variance observed in the regression models. Physical health status is weakly associated with preparedness in a negative direction at a continuous level of measurement. No association was found at statistically significant levels for mental health status and social well-being. These findings indicate that engaging in evacuation preparedness is a very complex, holistic, yet individualised decision-making process, and likely involves highly subjective considerations for what is personally relevant. Gender is not a factor. Those 18-24 years of age are least likely to prepare and evacuation preparedness increases with age. Multidimensional health and global well-being are important constructs to consider in disaster resilience for both pre-event and post-event timeframes. This work indicates a need for promoting self-management of risk and building resilience by incorporating a sense of personal meaning and importance into preparedness actions, and for future research into further understanding preparedness motivations.

Images, eqnz.chch.2010

See previous photo (exactly 3 hours earlier). Demolition of the support structure for NZ Breweries smokestack in Christchurch. CERES NZ's nibbler is at work, the pipe stack having been removed yesterday (Saturday). This is three hours after the previous photo, and just a pile of rubble sits beside the tree (largely undamaged despite being next...

Images, eqnz.chch.2010

Demolition of the support structure for NZ Breweries smokestack in Christchurch. CERES NZ's nibbler is at work, the pipe stack having been removed yesterday (Saturday). I retuned three hours later to see what progress had been made and it was GONE! See next photo. Damage to complex was from the 22/02/20011 earthquake.

Research papers, University of Canterbury Library

The Canterbury earthquakes in 2010 and 2011 had a significant impact on landlords and tenants of commercial buildings in the city of Christchurch. The devastation wrought on the city was so severe that in an unprecedented response to this disaster a cordon was erected around the central business district for nearly two and half years while demolition, repairs and rebuilding took place. Despite the destruction, not all buildings were damaged. Many could have been occupied and used immediately if they had not been within the cordoned area. Others had only minor damage but repairs to them could not be commenced, let alone completed, owing to restrictions on access caused by the cordon. Tenants were faced with a major problem in that they could not access their buildings and it was likely to be a long time before they would be allowed access again. The other problem was uncertainty about the legal position as neither the standard form leases in use, nor any statute, provided for issues arising from an inaccessible building. The parties were therefore uncertain about their legal rights and obligations in this situation. Landlords and tenants were unsure whether tenants were required to pay rent for a building that could not be accessed or whether they could terminate their leases on the basis that the building was inaccessible. This thesis looks at whether the common law doctrine of frustration could apply to leases in these circumstances, where the lease had made no provision. It analyses the history of the doctrine and how it applies to a lease, the standard form leases in use at the time of the earthquakes and the unexpected and extraordinary nature of the earthquakes. It then reports on the findings of the qualitative empirical research undertaken to look at the experiences of landlords and tenants after the earthquakes. It is argued that the circumstances of landlords and tenants met the test for the doctrine of frustration. Therefore, the doctrine could have applied to leases to enable the parties to terminate them. It concludes with a suggestion for reform in the form of a new Act to govern the special relationship between commercial landlords and tenants, similar to legislation already in place covering other types of relationships like those in residential tenancies and employment. Such legislation could provide dispute resolution services to enable landlords and tenants to have access to justice to determine their legal rights at all times, and in particular, in times of crisis.

Research papers, University of Canterbury Library

Supplemental energy dissipation devices are increasingly used to protect structures, limit loads transferred to structural elements and absorbing significant response energy without sacrificial structural damage. Lead extrusion dampers are supplemental energy dissipation devices, where recent development of smaller volumetric size with high force capacities, called high force to volume (HF2V) devices, has seen deployment in a large series of scaled and full-scaled experiments, as well as in three new structures in Christchurch, NZ and San Francisco, USA. HF2V devices have previously been designed using limited precision models, so there is variation in force prediction capability. Further, while the overall resistive force is predicted, the knowledge of the relative contributions of the different internal reaction mechanisms to these overall resistive forces is lacking, limiting insight and predictive accuracy in device design. There is thus a major need for detailed design models to better understand force generation, and to aid precision device design. These outcomes would speed the overall design and implementation process for uptake and use, reducing the need for iterative experimental testing. Design parameters from 17 experimental HF2V device tests are used to create finite element models using ABAQUS. The analysis is run using ABAQUS Explicit, in multiple step times of 1 second with automatic increments, to balance higher accuracy and computational time. The output is obtained from the time- history output of the contact pressure forces including the normal and friction forces on the lead along the shaft. These values are used to calculate the resistive force on the shaft as it moves through the lead, and thus the device force. Results of these highly nonlinear, high strain analyses are compared to experimental device force results. Model errors compared to experimental results for all 17 devices ranged from 0% to 20% with a mean absolute error of 6.4%, indicating most errors were small. In particular, the standard error in manufacturing is SE = ±14%. In this case, 15 of 17 devices (88%) are within ±1SE (±14%) and 2 of 17 devices (12%) are within ±2SE (±28). These results show low errors and a distribution of errors compared to experimental results that are within experimental device construction variability. The overall modelling methodology is objective and repeatable, and thus generalizable. The exact same modelling approach is applied to all devices with only the device geometry changing. The results validate the overall approach with relatively low error, providing a general modelling methodology for accurate design of HF2V devices.

Research papers, University of Canterbury Library

The Canterbury earthquakes of 2010 and 2011 have shone the spotlight on a number of tax issues. These issues, and in particular lessons learned from them, will be relevant for revenue authorities, policymakers and taxpayers alike in the broader context of natural disasters. Issues considered by this paper include the tax treatment of insurance monies. For example, building owners will receive pay-outs for destroyed assets and buildings which have been depreciated. Where the insurance payment is more than the adjusted tax value, there will be a taxable "gain on sale" (or depreciation recovery income). If the building owner uses those insurance proceeds to purchase a replacement asset, legislative amendments specifically enacted following the earthquakes provide that rollover relief of the depreciation recovery income is available. The tax treatment of expenditure to seismically strengthen a building is another significant issue faced by building owners. Case law has determined that this expenditure will usually be capital expenditure. In the past such costs could be capitalised to the building and depreciated accordingly. However, since the 2011-2012 income year owners have been prohibited from claiming depreciation on buildings and therefore currently no deduction is available for such strengthening expenditure (whether immediate or deferred). This has significant potential implications for landlords throughout New Zealand facing significant seismic retrofit costs. Incentives, or some form of financial support, whether delivered through the tax system or some other mechanism may be required. International Financial Reporting Standards (IFRS) require insurance proceeds, including reimbursement for expenditure of a capital nature, be reported as income while expenditure itself is not recorded as a current period expense. This has the effect of overstating current income and creating a larger variation between reported income for accounting and taxation purposes. Businesses have obligations to maintain certain business records for tax purposes. Reconstructing records destroyed by a natural disaster depends on how the information was originally stored. The earthquakes have demonstrated the benefits of ‘off-site’ (outside Canterbury) storage, in particular electronic storage. This paper considers these issues and the Inland Revenue Department (Inland Revenue) Standard Practice Statement which deals with inter alia retention of business records in electronic format and offshore record storage. Employer provided accommodation is treated as income to the benefitting employee. A recent amendment to the Income Tax Act 2007 retrospectively provides that certain employer provided accommodation is exempt from tax. The time aspect of these rules is extended where the employee is involved in the Canterbury rebuild and comes from outside the region.

Research papers, Victoria University of Wellington

“One of the most basic and fundamental questions in urban master planning and building regulations is ‘how to secure common access to sun, light and fresh air?” (Stromann-Andersen & Sattrup, 2011).  Daylighting and natural ventilation can have significant benefits in office buildings. Both of these ‘passive’ strategies have been found to reduce artificial lighting and air-conditioning energy consumption by as much as 80% (Ministry for the Environment, 2008); (Brager, et al., 2007). Access to daylight and fresh air can also be credited with improved occupant comfort and health, which can lead to a reduction of employee absenteeism and an increase of productivity (Sustainability Victoria, 2008).  In the rebuild of Christchurch central city, following the earthquakes of 2010 and 2011, Cantabrians have expressed a desire for a low-rise, sustainable city, with open spaces and high performance buildings (Christchurch City Council, 2011). With over 80% of the central city being demolished, a unique opportunity to readdress urban form and create a city that provides all buildings with access to daylight and fresh air exists.  But a major barrier to wide-spread adoption of passive buildings in New Zealand is their dependence on void space to deliver daylight and fresh air – void space which could otherwise be valuable built floor space. Currently, urban planning regulations in Christchurch prioritize density, allowing and even encouraging low performance compact buildings.  Considering this issue of density, this thesis aimed to determine which urban form and building design changes would have the greatest effect on building performance in Central City Christchurch.  The research proposed and parametrically tested modifications of the current compact urban form model, as well as passive building design elements. Proposed changes were assessed in three areas: energy consumption, indoor comfort and density. Three computer programs were used: EnergyPlus was the primary tool, simulating energy consumption and thermal comfort. Radiance/Daysim was used to provide robust daylighting calculations and analysis. UrbaWind enabled detailed consideration of the urban wind environment for reliable natural ventilation predictions.  Results found that, through a porous urban form and utilization of daylight and fresh air via simple windows, energy consumption could be reduced as much as 50% in buildings. With automatic modulation of windows and lighting, thermal and visual comfort could be maintained naturally for the majority of the occupied year. Separation of buildings by as little as 2m enabled significant energy improvements while having only minimal impact on individual property and city densities.  Findings indicated that with minor alterations to current urban planning laws, all buildings could have common access to daylight and fresh air, enabling them to operate naturally, increasing energy efficiency and resilience.