Search

found 1297 results

Images, UC QuakeStudies

Broken windows on a building in Welles Street. The photographer comments, "Keep out of sight. The wind will cover our breathing. Is there anything to eat in here?".

Images, UC QuakeStudies

A digitally manipulated photograph of a letterbox lying on the ground in front of a red-stickered house. The photographer comments, "An abandoned red stickered house just outside the four avenues that surround Christchurch CBD. The letterbox came down when the wall it was attached to collapsed. The occupants would have had strict instructions to stay out as the property is too dangerous to enter in case there is another earthquake or big aftershock".

Images, UC QuakeStudies

A digitally manipulated image of a broken window on Spicer House. The photographer comments, "One of the office blocks in Christchurch City, New Zealand. As the window has not been fixed I am presuming that this building will be slowly demolished at a later date".

Images, UC QuakeStudies

Glass panels with brass surrounds, stacked inside a building. The photographer comments, "These were brass dividers that were brought inside the building two years ago after the Christchurch earthquake. They have been sitting there abandoned in a restaurant that will be either repaired and reopened at a later date or demolished like the many others of its kind".

Research papers, The University of Auckland Library

The sequence of earthquakes that has affected Christchurch and Canterbury since September 2010 has caused damage to a great number of buildings of all construction types. Following post-event damage surveys performed between April 2011 and June 2011, the damage suffered by unreinforced stone masonry buildings is reported and different types of observed failures are described. A detailed technical description of the most prevalently observed failure mechanisms is provided, with reference to recognised failure modes for unreinforced masonry structures. The observed performance of existing seismic retrofit interventions is also provided, as an understanding of the seismic response of these interventions is of fundamental importance for assessing the vulnerability of similar strengthening techniques when applied to unreinforced stone masonry structures.