Search

found 95089 results

Images, UC QuakeStudies

A photograph of installations being constructed on the corner of Gloucester Street and Colombo Street for the LUXCITY event. In the foreground is the installation titled "In Your Face", and to the right is the installation titled "Etch-a-Sketch".

Articles, UC QuakeStudies

The project report for Poetica, part of Gap Filler project 20, Walls. Poetica was an urban poetry project in which an interactive poetry installation was painted on the wall of 614 Colombo Street. The purpose of the project was to visualise the regeneration of Christchurch as an unwritten poem by allowing members of the public to writing poetry on the Poetica wall.

Images, UC QuakeStudies

The damaged Snell Place footbridge. A crack is visible at the apex of the span. The photographer comments, "Before the Christchurch earthquakes this bridge used to be just just 9 feet at high tide above the River Avon. Now with the ends pushed together it has probably moved up another 9 feet".

Images, UC QuakeStudies

A digitally manipulated image of a mannequin. The photographer comments, "During the Christchurch earthquake on 22 February 2011 a lot of people were seriously injured or killed because they run out of buildings. Falling masonry from the exterior of the buildings hit them, but if they had remained inside they would have probably been perfectly safe".

Images, UC QuakeStudies

A digitally manipulated image of Latimer Square. The photographer comments, "It is so nice to stand in the middle of Latimer Square on a bright Winter's day and forget the havoc that is around you. The square has hardly been touched by the Christchurch earthquake, but it is surrounded by demolished and damaged buildings".

Images, UC QuakeStudies

Glass panels with brass surrounds, stacked inside a building. The photographer comments, "These were brass dividers that were brought inside the building two years ago after the Christchurch earthquake. They have been sitting there abandoned in a restaurant that will be either repaired and reopened at a later date or demolished like the many others of its kind".

Videos, UC QuakeStudies

A video of an address by Mike Greer, Director of Mike Greer Homes Ltd, at the 2014 Seismics and the City forum. This talk was part of the Building Opportunities section, and focused on the housing needs and the residential building opportunities in the inner city, Greater Christchurch, and the Canterbury region.

Images, UC QuakeStudies

The former Ozone Dressing Sheds in North New Brighton, with broken and boarded-up windows. The photographer comments, "This is the Ozone as it was before it was demolished. It appeared to have been in the process of being redecorated internally, but the February Christchurch earthquake seems to have caused its demise".

Audio, Radio New Zealand

An inquiry into the Earthquake Commission has found it was poorly prepared for the Canterbury earthquakes - and has left people with a "deep mistrust of government" that will take years to overcome. The government has this morning released findings from the inquiry, chaired by Dame Silvia Cartwright. Our Christchurch reporter, Conan Young, has been reading through the details and spoke with Māni Dunlop.  

Audio, Radio New Zealand

A couple of Christchurch men are collecting letterboxes from the city's red-zoned suburbs, to create sculptures to tell the stories of the homes which have been demolished since the February 2011 earthquake. One of the men is Evan Smith - who co-chairs a group called the Avon-Otakaro Network. It's working toward creating a riverside park along the Avon, where the houses once stood.

Audio, Radio New Zealand

Residents of Christchurch's coastal suburbs around New Brighton are being promised they won't have to wait another decade for an urgently needed new bridge. The existing one is a critical emergency escape route but is almost 100 years old and suffered significant damage in the 2011 earthquake. And as Timothy Brown reports, plans for an upgrade are grinding slowly ahead.

Images, eqnz.chch.2010

Liquefaction erupted throughout the city during each of the major earthquakes. It had to be cleared and everyone piled it onto the roadside, where it was eventually picked up by City Council trucks. The fine dust permeated the air for weeks, driving many to wear dust masks while outside.

Images, eqnz.chch.2010

Liquefaction erupted throughout the city during each of the major earthquakes. It had to be cleared and everyone piled it onto the roadside, where it was eventually picked up by City Council trucks. The fine dust permeated the air for weeks, driving many to wear dust masks while outside.

Images, eqnz.chch.2010

Here's Prarie, outside our flat, the day after the 7.1 earthquake hit Christchurch. You see the damage to the street, which continued through our flat. We were forced to move out once an engineer examined the cracks in our balcony, walls, floors, and ceilings, and told us the building was unsafe for living. One crack ran from the street, pres...

Images, eqnz.chch.2010

The St John The Evangelist Catholic Church in Leeston was cordoned off due to damage suffered during the magnitude 7.1 earthquake that struck mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

The St John The Evangelist Catholic Church in Leeston was cordoned off due to damage suffered during the magnitude 7.1 earthquake that struck mid-Canterbury on Saturday 4 September 2010.

Images, eqnz.chch.2010

The farmer swore that his fence was erected in a straingt line, but mother nature had other ideas! Aftermath of the Saturday 4 September 2010 magnitude 7.1 earthquake at the previously unknown faultline along which the quake originated.

Images, eqnz.chch.2010

The farmer swore that his hedge was planted in a straingt line, but mother nature had other ideas! Aftermath of the Saturday 4 September 2010 magnitude 7.1 earthquake at the previously unknown faultline along which the quake originated.

Images, eqnz.chch.2010

The magnitude 7.1 earthquake that struck mid-Canterbury on Saturday 4 September 2010 broke the tip of the spire of the St John The Evangelist Catholic Church in Leeston

Images, eqnz.chch.2010

The farmer swore that his fence was erected in a straingt line, but mother nature had other ideas! Aftermath of the Saturday 4 September 2010 magnitude 7.1 earthquake at the previously unknown faultline along which the quake originated.

Research papers, University of Canterbury Library

This poster provides a comparison between the strong ground motions observed in the 22 February 2011 Mw6.3 Christchurch earthquake with those observed in Tokyo during the 11 March 2011 Mw9.0 Tohoku earthquake. The destuction resulting from both of these events has been well documented, although tsunami was the principal cause of damage in the latter event, and less attention has been devoted to the impact of earthquake-induced ground motions. Despite Tokyo being located over 100km from the nearest part of the causative rupture, the ground motions observed from the Tohoku earthquake were significant enough to cause structural damage and also significant liquefaction to loose reclaimed soils in Tokyo Bay. The author was fortunate enough (from the perspective of an earthquake engineer) to experience first-hand both of these events. Following the Tohoku event, the athor conducted various ground motion analyses and reconniassance of the Urayasu region in Tokyo Bay affected by liquefaction in collaboration with Prof. Kenji Ishihara. This conference is therefore a fitting opportunity in which to discuss some of authors insights obtained as a result of this first hand knowledge. Figure 1 illustrates the ground motions recorded in the Christchurch CBD in the 22 February 2011 and 4 September 2010 earthquakes, with that recorded in Tokyo Bay in the 11 March 2011 Tohoku earthquake. It is evident that these three ground motions vary widely in their amplitude and duration. The CBGS ground motion from the 22 February 2011 event has a very large amplitude (nearly 0.6g) and short duration (approx. 10s of intense shaking), as a result of the causal Mw6.3 rupture at short distance (Rrup=4km). The CBGS ground motion from the 4 September 2010 earthquake has a longer duration (approx. 30s of intense shaking), but reduced acceleration amplitude, as a result of the causal Mw7.1 rupture at a short-to-moderate distance (Rrup=14km). Finally, the Urayasu ground motion in Tokyo bay during the 11 March 2011 Tohoku earthquake exhibits an acceleration amplitude similar to the 4 September 2010 CBGS ground motion, but a significantly larger duration (approx 150s of intense shaking). Clearly, these three different ground motions will affect structures and soils in different ways depending on the vibration characteristics of the structures/soil, and the potential for strength and stiffness degradation due to cumulative effects. Figure 2 provides a comparison between the arias intensities of the several ground motion records from the three different events. It can be seen that the arias intensities of the ground motions in the Christchurch CBD from the 22 February 2011 earthquake (which is on average AI=2.5m/s) is approximately twice that from the 4 September 2010 earthquake (average AI≈1.25). This is consistent with a factor of approximately 1.6 obtained by Cubrinovski et al. (2011) using the stress-based (i.e.PGA-MSF) approach of liquefaction triggering. It can also be seen that the arias intensity of the ground motions recorded in Tokyo during the 2011 Tohoku earthquake are larger than ground motions in the Christchurch CBD from the 4 September 2011 earthquake, but smaller than those of the 22 February 2011 earthquake. Based on the arias intensity liquefaction triggering approach it can therefore be concluded that the ground motion severity, in terms of liquefaction potential, for the Tokyo ground motions is between those ground motions in Christchurch CBD from the 4 September 2010 and 22 February 2011 events.

Videos, UC QuakeStudies

A video about the Red Zone in the Christchurch Central City after the 22 February 2011 earthquake. The video includes footage of damaged buildings and cars, the New Zealand Police and Army patrolling the streets, and an interview with Michael Harvey, a squad leader in the New Zealand Urban Search and Rescue.

Videos, UC QuakeStudies

A video of a tour through the Christchurch central city Red Zone. The video includes footage of the cordon checkpoint on Armagh Street, Oxford Terrace, Colombo Street, the Edmond's Band Rotunda, Manchester Street, Gloucester Street, Worcester Street, the Octagon Live restaurant, Hereford Street, Bedford Row, the Hotel Grand Chancellor, and High Street.

Images, UC QuakeStudies

A view down Chancery Lane through cordon fencing. A sign reading "No Entry" is posted on the fence, and fallen leaves have accumulated around the fence and buildings. The photographer comments, "Chancery Lane in the Christchurch CBD red zone looks like it has had no one through at all since the February earthquake".

Images, UC QuakeStudies

The entrance to the West Avon building on Montreal Street. The photographer comments, "This very wonderful Art Deco heritage building in Christchurch had residents living in it until another visit from the building engineers re-re-checking for earthquake damage. Now it is fenced off and on the list for possible demolition".

Videos, UC QuakeStudies

An video recording of Rev Darryl Tempero's interview for the Church in the Quakes Project. The interview was conducted by Melissa Parsons on 3 October 2012. At the time, Darryl Tempero was a Minister at Hope Presbyterian Hornby, the Presbyterian Earthquake Coordinator, and the Co-Chair of Christchurch Post Earthquake Churches' Forum.

Audio, UC QuakeStudies

An audio recording of Rev Darryl Tempero's interview for the Church in the Quakes Project. The interview was conducted by Melissa Parsons on 3 October 2012. At the time, Darryl Tempero was a Minister at Hope Presbyterian Hornby, the Presbyterian Earthquake Coordinator, and the Co-Chair of Christchurch Post Earthquake Churches' Forum.

Images, UC QuakeStudies

A fence along the side of the Avon River near the Retour Restaurant has broken and is leaning towards the river. The photographer comments, "After the Christchurch earthquakes the land moved towards the river Avon and in a lot of places buildings and walls sagged down in the direction of the waterway".

Research papers, University of Canterbury Library

This report presents the simplified seismic assessment of a case study reinforced concrete (RC) building following the newly developed and refined NZSEE/MBIE guidelines on seismic assessment (NZSEE/MBIE, semi-final draft 26 October 2016). After an overview of the step-by-step ‘diagnostic’ process, including an holistic and qualitative description of the expected vulnerabilities and of the assessment strategy/methodology, focus is given, whilst not limited, to the implementation of a Detailed Seismic Assessment (DSA) (NZSEE/MBIE, 2016c). The DSA is intended to provide a more reliable and consistent outcome than what can be provided by an initial seismic assessment (ISA). In fact, while the Initial Seismic Assessment (ISA), of which the Initial Evaluation Procedure is only a part of, is the more natural and still recommended first step in the overall assessment process, it is mostly intended to be a coarse evaluation involving as few resources as reasonably possible. It is thus expected that an ISA will be followed by a Detailed Seismic Assessment (DSA) not only where the threshold of 33%NBS is not achieved but also where important decisions are intended that are reliant on the seismic status of the building. The use of %NBS (% New Building Standard) as a capacity/demand ratio to describe the result of the seismic assessment at all levels of assessment procedure (ISA through to DSA) is deliberate by the NZSEE/MBIE guidelines (Part A) (NZSEE/MBIE 2016a). The rating for the building needs only be based on the lowest level of assessment that is warranted for the particular circumstances. Discussion on how the %NBS rating is to be determined can be found in Section A3.3 (NZSEE/MBIE 2016a), and, more specifically, in Part B for the ISA (NZSEE/MBIE 2016b) and Part C for the DSA (NZSEE/MBIE 2016c). As per other international approaches, the DSA can be based on several analysis procedures to assess the structural behaviour (linear, nonlinear, static or dynamic, force or displacement-based). The significantly revamped NZSEE 2016 Seismic Assessment Guidelines strongly recommend the use of an analytical (basically ‘by hand’) method, referred to the Simple Lateral Mechanism Analysis (SLaMA) as a first phase of any other numerically-based analysis method. Significant effort has thus been dedicated to provide within the NZSEE 2016 guidelines (NZSEE/MBIE 2016c) a step-by-step description of the procedure, either in general terms (Chapter 2) or with specific reference to Reinforced Concrete Buildings (Chapter 5). More specifically, extract from the guidelines, NZSEE “recommend using the Simple Lateral Mechanism Analysis (SLaMA) procedure as a first step in any assessment. While SLaMA is essentially an analysis technique, it enables assessors to investigate (and present in a simple form) the potential contribution and interaction of a number of structural elements and their likely effect on the building’s global capacity. In some cases, the results of a SLaMA will only be indicative. However, it is expected that its use should help assessors achieve a more reliable outcome than if they only carried out a detailed analysis, especially if that analysis is limited to the elastic range For complex structural systems, a 3D dynamic analysis may be necessary to supplement the simplified nonlinear Simple Lateral Mechanism Analysis (SLaMA).” This report presents the development of a full design example for the the implementation of the SLaMA method on a case study buildings and a validation/comparison with a non-linear static (pushover) analysis. The step-by-step-procedure, summarized in Figure 1, will be herein demonstrated from a component level (beams, columns, wall elements) to a subassembly level (hierarchy of strength in a beam-column joint) and to a system level (frame, C-Wall) assuming initially a 2D behaviour of the key structural system, and then incorporating a by-hand 3D behaviour (torsional effects).