The UC CEISMIC Canterbury Earthquakes Digital Archive was built following the devastating earthquakes that hit the Canterbury region in the South Island of New Zealand from 2010 – 2012. 185 people were killed in the 6.3 magnitude earthquake of February 22nd 2011, thousands of homes and businesses were destroyed, and the local community endured over 10,000 aftershocks. The program aims to document and protect the social, cultural, and intellectual legacy of the Canterbury community for the purposes of memorialization and enabling research. The nationally federated archive currently stores 75,000 items, ranging from audio and video interviews to images and official reports. Tens of thousands more items await ingestion. Significant lessons have been learned about data integration in post-disaster contexts, including but not limited to technical architecture, governance, ingestion process, and human ethics. The archive represents a model for future resilience-oriented data integration and preservation products.
The University of Canterbury CEISMIC Canterbury Earthquake Digital Archive draws on the example of the Centre for History and New Media’s (CHNM) September 11 Archive, which was used to collect digital artefacts after the bombing of the World Trade Centre buildings in 2001, but has gone significantly further than this project in its development as a federated digital archive. The new University of Canterbury Digital Humanities Programme – initiated to build the archive – has gathered together a Consortium of major national organizations to contribute content to a federated archive based on principles of openness and collaboration derived directly from the international digital humanities community.
An earthquake memories story from Debbie Smith, Health Protection Officer, Community and Public Health, titled, "Long road to recovery".
An earthquake memories story from Malcolm Walker, Health Protection Officer, Community and Public Health, titled, "Suddenly the screaming started".
An earthquake memories story from Sue Gillan, Personal Assistant to General Manager Older Person's, Orthopaedics and Rehabilitation, The Princess Margaret Hospital, titled, "All hands on deck".
An earthquake memories story from Judy Williamson, Health Protection Officer, Community and Public Health, titled, "Not just another one".
An earthquake memories story from Phil Schroeder, General Practitioner at Rolleston, titled, "A very sobering thought".
An earthquake memories story from Howard Wilson, General Practitioner for Akaroa Health Centre, titled, "Adrenalin just kicked in".
An earthquake memories story from David Hiddlestone and Alan Heney, Christchurch Hospital Orderlies, titled, "Proud of my team".
An earthquake memories story from Rob Handley, titled, "English medic helps out".
An earthquake memories story from Justin Roake, Pete Laws, and Adib (Eddie) Khanafer, Vascular Surgeons, Christchurch Hospital, titled, "Whole country pulled together".
Currently there is a worldwide renaissance in timber building design. At the University of Canterbury, new structural systems for commercial multistorey timber buildings have been under development since 2005. These systems incorporate large timber sections connected by high strength post-tensioning tendons, and timber-concrete composite floor systems, and aim to compete with existing structural systems in terms of cost, constructability, operational and seismic performance. The development of post-tensioned timber systems has created a need for improved lateral force design approaches for timber buildings. Current code provisions for seismic design are based on the strength of the structure, and do not adequately account for its deformation. Because timber buildings are often governed by deflection, rather than strength, this can lead to the exceedence of design displacement limitations imposed by New Zealand codes. Therefore, accurate modeling approaches which define both the strength and deformation of post-tensioned timber buildings are required. Furthermore, experimental testing is required to verify the accuracy of these models. This thesis focuses on the development and experimental verification of modeling approaches for the lateral force design of post-tensioned timber frame and wall buildings. The experimentation consisted of uni-direcitonal and bi-directional quasi-static earthquake simulation on a two-thirds scale, two-storey post-tensioned timber frame and wall building with timber-concrete composite floors. The building was subjected to lateral drifts of up to 3% and demonstrated excellent seismic performance, exhibiting little damage. The building was instrumented and analyzed, providing data for the calibration of analytical and numerical models. Analytical and numerical models were developed for frame, wall and floor systems that account for significant deformation components. The models predicted the strength of the structural systems for a given design performance level. The static responses predicted by the models were compared with both experimental data and finite element models to evaluate their accuracy. The frame, wall and floor models were then incorporated into an existing lateral force design procedure known as displacement-based design and used to design several frame and wall structural systems. Predictions of key engineering demand parameters, such as displacement, drift, interstorey shear, interstorey moment and floor accelerations, were compared with the results of dynamic time-history analysis. It was concluded that the numerical and analytical models, presented in this thesis, are a sound basis for determining the lateral response of post-tensioned timber buildings. However, future research is required to further verify and improve these prediction models.
University of Canterbury's John Hopkins and Toni Collins explain disaster law and shortcomings in NZ's legal system highlighted by the Canterbury earthquakes.
An earthquake memories story titled, "Community pharmacies push on through".
The front page graphic for the Mainlander section of The Press. The main headline reads, "Shock to the system".
The national wool auction system is back in business after being knocked out of action by the Christchurch earthquake.
It is fast becoming common practice for civil engineering infrastructure and building structures to be designed to achieve a set of performance objectives. To do so, consideration is now being given to systems capable of sustaining minimal damage after an earthquake while still being cost competitive. This has led to the development of high performance seismic resisting systems, followed by advances in design methodologies. The paper presents the experimental response of four pre-cast, post-tensioned rocking walls with high-performing dissipating solutions tested on the shake-table at the University of Canterbury. The wall systems were designed as a retrofit solution for an existing frame building however, can also be used for the design of new, high-performance structures. The use of externally mounted dampers allowed numerous dissipation schemes to be explored including mild-steel dampers (hysteretic dampers), viscous dampers, a combination of both or no dampers. The advantages of both velocity and displacement dependant dissipation was investigated for protection against strong ground motions with differing rupture characteristics i.e. far-field and near-field events. The experimental results are used to verify a proposed design procedure for post-tensioned rocking systems with supplementary hysteretic and viscous dissipation. The predicted response compared well with the measured shake-table response.
This paper presents the probabilistic seismic performance and loss assessment of an actual bridge– foundation–soil system, the Fitzgerald Avenue twin bridges in Christchurch, New Zealand. A two-dimensional finite element model of the longitudinal direction of the system is modelled using advanced soil and structural constitutive models. Ground motions at multiple levels of intensity are selected based on the seismic hazard deaggregation at the site. Based on rigorous examination of several deterministic analyses, engineering demand parameters (EDP’s), which capture the global and local demand, and consequent damage to the bridge and foundation are determined. A probabilistic seismic loss assessment of the structure considering both direct repair and loss of functionality consequences was performed to holistically assess the seismi risk of the system. It was found that the non-horizontal stratification of the soils, liquefaction, and soil–structure interaction had pronounced effects on the seismic demand distribution of the bridge components, of which the north abutment piles and central pier were critical in the systems seismic performance. The consequences due to loss of functionality of the bridge during repair were significantly larger than the direct repair costs, with over a 2% in 50 year probability of the total loss exceeding twice the book-value of the structure.
Earthquakes cause significant damage to buildings due to strong vibration of the ground. Levitating houses using magnets and electromagnets would provide a complete isolation of ground motion for protecting buildings from seismic damage. Two types of initial configuration for the electromagnet system were proposed with the same air gap (10mm) between the electromagnet and reluctance plate. Both active and passive controller are modelled to investigate the feasibility of using a vibration control system for stabilizing the magnetic system within the designed air gap (10mm) in the vertical direction. A nonlinear model for the magnetic system is derived to implement numerical simulation of structural response under the earthquake record in Christchurch Botanic Gardens on 21 February 2011. The performance of the uncontrolled and the controlled systems are compared and the optimal combination of control gains are determined for the PID active controller. Simulation results show both active PID controller with constant and nonlinear attracting force are able to provide an effective displacement control within the required air gap (+/-5mm). The maximum control force demand for the PID controller in the presence of nonlinear attracting force is 4.1kN, while the attracting force in equilibrium position is 10kN provided by the electromagnet. These results show the feasibility of levitating a house using the current electromagnet and PID controller. Finally, initial results of passive control using two permanent magnets or dampers show the structural responses can be effectively reduced and centralized to +/-1mm using a nonlinear centring barrier function.
A video about C1 Espresso's pneumatic tube food delivery system. The video includes an interview with café owner Sam Crofskey about his decision to install the pneumatic tubes. It also includes an interview with chef Richie Ward, who demonstrates how the tubes work. Mini burgers will be stacked inside tubes and then placed in the pneumatic system. The tube will then be sent through the café at 140 km/h to appear at people's tables.
An earthquake memories story from Murray White, Site Trades Supervisor, Burwood Hospital, titled, "Pipes fractured in numerous places".
An earthquake memories story from Anne Morgan, Service Manager Children's, Christchurch Women's Hospital, titled, "Runner for the emergency department".
An earthquake memories story from Shirley Butcher, Charge Nurse Manager, Burwood Hospital, titled, "Could see it all unfolding".
An earthquake memories story from Mike Ardagh, Medical Specialist, Emergency Department, Christchurch Hospital, titled, "Clear heads on strong shoulders".
An earthquake memories story from Jane Evans, Transfer of Care Nurse, Christchurch Hospital, titled, "Carried on and made do".
An earthquake memories story from Pauline Clark, General Manager, Medical/Surgical and Christchurch Women's and Children's, titled, "Take good care of you".
An earthquake memories story from Anne Esson, Nurse Manager, Emergency Department, Christchurch Hospital, titled, "Much was done by torchlight".
An earthquake memories story from Lev Zhurasky, Charge Nurse Manager, titled, "Ward 29 a huge mess".
An earthquake memories story from Josie Butler, student nurse, titled, "Student nurse on a mission".
An earthquake memories story from Susan Kovacs, Mental Health GP Liaison, Rural Canterbury Primary Health Organisation, titled, "We watched it all unfolding".