Search

found 148 results

Research papers, Lincoln University

Saltwater Forest is a Dacrydium cupressinum-dominated lowland forest covering 9000 ha in south Westland, South Island, New Zealand. Four thousand hectares is managed for sustainable production of indigenous timber. The aim of this study was to provide an integrated analysis of soils, soil-landform relationships, and soil-vegetation relationships at broad and detailed scales. The broad scale understandings provide a framework in which existing or future studies can be placed and the detailed studies elucidate sources of soil and forest variability. Glacial landforms dominate. They include late Pleistocene lateral, terminal and ablation moraines, and outwash aggradation and degradation terraces. Deposits and landforms from six glacial advances have been recognised ranging from latest Last (Otira) Glaciation to Penultimate (Waimea) Glaciation. The absolute ages of landforms were established by analysis of the thickness and soil stratigraphy of loess coverbeds, augmented with radiocarbon dating and phytolith and pollen analysis. In the prevailing high rainfall of Westland soil formation is rapid. The rate of loess accretion in Saltwater Forest (ca. 30 mm ka⁻¹) has been low enough that soil formation and loess accretion took place contemporaneously. Soils formed in this manner are known as upbuilding soils. The significant difference between upbuilding pedogenesis and pedogenesis in a topdown sense into an existing sediment body is that each subsoil increment of an upbuilding soil has experienced processes of all horizons above. In Saltwater Forest subsoils of upbuilding soils are strongly altered because they have experienced the extremely acid environment of the soil surface at some earlier time. Some soil chronosequence studies in Westland have included upbuilding soils formed in loess as the older members of the sequence. Rates and types of processes inferred from these soils should be reviewed because upbuilding is a different pedogenic pathway to topdown pedogenesis. Landform age and morphology were used as a primary stratification for a study of the soil pattern and nature of soil variability in the 4000 ha production area of Saltwater Forest. The age of landforms (> 14 ka) and rapid soil formation mean that soils are uniformly strongly weathered and leached. Soils include Humic Organic Soils, Perch-gley Podzols, Acid Gley Soils, Allophanic Brown Soils, and Orthic or Pan Podzols. The major influence on the nature of soils is site hydrology which is determined by macroscale features of landforms (slope, relief, drainage density), mesoscale effects related to position on landforms, and microscale influences determined by microtopography and individual tree effects. Much of the soil variability arises at microscales so that it is not possible to map areas of uniform soils at practical map scales. The distribution of soil variability across spatial scales, in relation to the intensity of forest management, dictates that it is most appropriate to map soil complexes with boundaries coinciding with landforms. Disturbance of canopy trees is an important agent in forest dynamics. The frequency of forest disturbance in the production area of Saltwater Forest varies in a systematic way among landforms in accord with changes in abundance of different soils. The frequency of forest turnover is highest on landforms with the greatest abundance of extremely poorly-drained Organic Soils. As the abundance of better-drained soils increases the frequency of forest turnover declines. Changes in turnover frequency are reflected in the mean size and density of canopy trees (Dacrydium cupressinum) among landforms. Terrace and ablation moraine landforms with the greatest abundance of extremely poorly-drained soils have on average the smallest trees growing most densely. The steep lateral moraines, characterised by well drained soils, have fewer, larger trees. The changes manifested at the landform scale are an integration of processes operating over much shorter range as a result of short-range soil variability. The systematic changes in forest structure and turnover frequency among landforms and soils have important implications for sustainable forest management.

Research papers, Lincoln University

The topic of ‘resilience’ thinking seems of late to have superseded that of ‘sustainability’ thinking. Sustainability means simply that which sustains and lasts but has taken on many different subtle nuances over the last 20 years since it came into common parlance with the Bruntland Report of 1987, which sought to clarify the definition. However, resilience ‘speak’ has become hot property now, especially highlighted since Christchurch experienced a natural disaster in the form of several large earthquakes from Sep 2010 until most recently in December 2011. Many people comment on how resilient people have been, how resilient the city has been, so it seems timely to investigate what resilience actually means and importantly, resilient to what and of what? (Lorenz, 2010). This essay will look at the concept of systems and resilience, definitions and theories will be explored generally and then these concepts will be more closely defined within the context of a particular system, that of Somerfield School located in the western suburbs of Christchurch.

Research papers, Lincoln University

An emerging water crisis is on the horizon and is poised to converge with several other impending problems in the 21st century. Future uncertainties such as climate change, peak oil and peak water are shifting the international focus from a business as usual approach to an emphasis on sustainable and resilient strategies that better meet these challenges. Cities are being reimagined in new ways that take a multidisciplinary approach, decompartmentalising functions and exploring ways in which urban systems can share resources and operate more like natural organisms. This study tested the landscape design implications of wastewater wetlands in the urban environment and evaluated their contribution to environmental sustainability, urban resilience and social development. Black and grey water streams were the central focus of this study and two types of wastewater wetlands, tidal flow (staged planning) and horizontal subsurface flow wetlands were tested through design investigations in the earthquake-affected city of Christchurch, New Zealand. These investigations found that the large area requirements of wastewater wetlands can be mitigated through landscape designs that enhance a matrix of open spaces and corridors in the city. Wastewater wetlands when combined with other urban and rural services such as food production, energy generation and irrigation can aid in making communities more resilient. Landscape theory suggests that the design of wastewater wetlands must meet cultural thresholds of beauty and that the inclusion of waste and ecologies in creatively designed landscapes can deepen our emotional connection to nature and ourselves.

Audio, Radio New Zealand

It's been a long road to restore Christchurch's Isaac Theatre Royal, but tonight, it will finally open its doors again. The theatre sustained considerable damage in the earthquakes of 22nd February and 13th June 2011 and continuing shakes have made the restoration particularly difficult for architects. The project architect from Warren and Mahoney, is Vanessa Carswell.

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Christchurch Earthquake. Wayne Alexander has now lived through 3 earthquakes with a richter scale of 7 plus. 1968 Inangahua, 1989 San Francisco and 2010 Christchurch. His father also lived through three of the same magnitude. They live in one of the old Deans family residences which sustained chimney damage in Saturday's earthquake".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Christchurch Earthquake. Wayne Alexander has now lived through 3 earthquakes with a richter scale of 7 plus. 1968 Inangahua, 1989 San Francisco and 2010 Christchurch. His father also lived through three of the same magnitude. Wayne and his son Lochlan Alexander (2 yr). They live in one of the old Deans family residences, which sustained chimney damage in Saturday's earthquake".

Research papers, University of Canterbury Library

Christchurch Ōtautahi, New Zealand, is a city of myriad waterways and springs. Māori, the indigenous people of New Zealand, have water quality at the core of their cultural values. The city’s rivers include the Avon/Ōtākaro, central to the city centre’s aesthetic appeal since early settlement, and the Heathcote/Ōpāwaho. Both have been degraded with increasing urbanisation. The destructive earthquake sequence that occurred during 2010/11 presented an opportunity to rebuild significant areas of the city. Public consultation identified enthusiasm to rebuild a sustainable city. A sustainable water sensitive city is one where development is constructed with the water environment in mind. Water sensitive urban design applies at all scales and is a holistic concept. In Christchurch larger-scale multi-value stormwater management solutions were incorporated into rapidly developed greenfield sites on the city’s outskirts and in satellite towns, as they had been pre-earthquake. Individual properties on greenfield sites and within the city, however, continued to be constructed without water sensitive features such as rainwater tanks or living roofs. This research uses semi-structured interviews, policy analysis, and findings from local and international studies to investigate the benefits of building-scale WSUD and the barriers that have resulted in their absence. Although several inter-related barriers became apparent, cost, commonly cited as a barrier to sustainable development in general, was strongly represented. However, it is argued that the issue is one of mindset rather than cost. Solutions are proposed, based on international and national experience, that will demonstrate the benefits of adopting water sensitive urban design principles including at the building scale, and thereby build public and political support. The research is timely - there is still much development to occur, and increasing pressures from urban densification, population growth and climate change to mitigate.

Research papers, Victoria University of Wellington

“One of the most basic and fundamental questions in urban master planning and building regulations is ‘how to secure common access to sun, light and fresh air?” (Stromann-Andersen & Sattrup, 2011).  Daylighting and natural ventilation can have significant benefits in office buildings. Both of these ‘passive’ strategies have been found to reduce artificial lighting and air-conditioning energy consumption by as much as 80% (Ministry for the Environment, 2008); (Brager, et al., 2007). Access to daylight and fresh air can also be credited with improved occupant comfort and health, which can lead to a reduction of employee absenteeism and an increase of productivity (Sustainability Victoria, 2008).  In the rebuild of Christchurch central city, following the earthquakes of 2010 and 2011, Cantabrians have expressed a desire for a low-rise, sustainable city, with open spaces and high performance buildings (Christchurch City Council, 2011). With over 80% of the central city being demolished, a unique opportunity to readdress urban form and create a city that provides all buildings with access to daylight and fresh air exists.  But a major barrier to wide-spread adoption of passive buildings in New Zealand is their dependence on void space to deliver daylight and fresh air – void space which could otherwise be valuable built floor space. Currently, urban planning regulations in Christchurch prioritize density, allowing and even encouraging low performance compact buildings.  Considering this issue of density, this thesis aimed to determine which urban form and building design changes would have the greatest effect on building performance in Central City Christchurch.  The research proposed and parametrically tested modifications of the current compact urban form model, as well as passive building design elements. Proposed changes were assessed in three areas: energy consumption, indoor comfort and density. Three computer programs were used: EnergyPlus was the primary tool, simulating energy consumption and thermal comfort. Radiance/Daysim was used to provide robust daylighting calculations and analysis. UrbaWind enabled detailed consideration of the urban wind environment for reliable natural ventilation predictions.  Results found that, through a porous urban form and utilization of daylight and fresh air via simple windows, energy consumption could be reduced as much as 50% in buildings. With automatic modulation of windows and lighting, thermal and visual comfort could be maintained naturally for the majority of the occupied year. Separation of buildings by as little as 2m enabled significant energy improvements while having only minimal impact on individual property and city densities.  Findings indicated that with minor alterations to current urban planning laws, all buildings could have common access to daylight and fresh air, enabling them to operate naturally, increasing energy efficiency and resilience.

Research papers, Lincoln University

Artificial Neural Networks (ANN) as a tool offers opportunities for modeling the inherent complexity and uncertainty associated with socio-environmental systems. This study draws on New Zealand ski fields (multiple locations) as socio- environmental systems while considering their perceived resilience to low probability but potential high consequences catastrophic natural events (specifically earthquakes). We gathered data at several ski fields using a mixed methodology including: geomorphic assessment, qualitative interviews, and an adaptation of Ozesmi and Ozesmi’s (2003) multi-step fuzzy cognitive mapping (FCM) approach. The data gathered from FCM are qualitatively condensed, and aggregated to three different participant social groups. The social groups include ski fields users, ski industry workers, and ski field managers. Both quantitative and qualitative indices are used to analyze social cognitive maps to identify critical nodes for ANN simulations. The simulations experiment with auto-associative neural networks for developing adaptive preparation, response and recovery strategies. Moreover, simulations attempt to identify key priorities for preparation, response, and recovery for improving resilience to earthquakes in these complex and dynamic environments. The novel mixed methodology is presented as a means of linking physical and social sciences in high complexity, high uncertainty socio-environmental systems. Simulation results indicate that participants perceived that increases in Social Preparation Action, Social Preparation Resources, Social Response Action and Social Response Resources have a positive benefit in improving the resilience to earthquakes of ski fields’ stakeholders.

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Christchurch Earthquake. Wayne Alexander has now lived through 3 earthquakes with a richter scale of 7 plus. 1968 Inangahua, 1989 San Francisco and 2010 Christchurch. His father also lived through three of the same magnitude. (L-R) Lochlan Alexander (2 yr), Wayne Alexander and Annemarie Winstone (mother of Lochlan). They live in one of the old Dean's family residences which sustained chimney damage in Saturday's earthquake".

Images, UC QuakeStudies

Photograph captioned by Fairfax, "Christchurch Earthquake. Wayne Alexander has now lived through 3 earthquakes with a richter scale of 7 plus. 1968 Inangahua, 1989 San Francisco and 2010 Christchurch. His father also lived through three of the same magnitude. (L-R) Lochlan Alexander (2 yr), Wayne Alexander and Annemarie Winstone (mother of Lochlan). They live in one of the old Deans family residences which sustained chimney damage in Saturday's earthquake".

Research papers, University of Canterbury Library

Christchurch and Canterbury suffered significant housing losses due to the earthquakes. Estimates from the Earthquake Commission (EQC) (2011) suggest that over 150,000 homes (around three quarters of Christchurch housing stock) sustained damage from the earthquakes. Some areas of Christchurch have been declared not suitable for rebuilding, affecting more than 7,500 residential properties.

Research papers, University of Canterbury Library

In recent Canterbury earthquakes, structures have performed well in terms of life safety but the estimated total cost of the rebuild was as high as $40 billion. The major contributors to this cost are repair/demolition/rebuild cost, the resulting downtime and business interruption. For this reason, the authors are exploring alternate building systems that can minimize the downtime and business interruption due to building damage in an earthquake; thereby greatly reducing the financial implications of seismic events. In this paper, a sustainable and demountable precast reinforced concrete (RC) frame system in which the precast members are connected via steel tubes/plates or steel angles/plates and high strength friction grip (HSFG) bolts is introduced. In the proposed system, damaged structural elements in seismic frames can be easily replaced with new ones; thereby making it an easily and quickly repairable and a low-loss system. The column to foundation connection in the proposed system can be designed either as fixed or pinned depending on the requirement of strength and stiffness. In a fixed base frame system, ground storey columns will also be damaged along with beams in seismic events, which are to be replaced after seismic events; whereas in a pin base frame only beams (which are easy to replace) will be damaged. Low to medium rise (3-6 storey) precast RC frame buildings with fixed and pin bases are analyzed in this paper; and their lateral capacity, lateral stiffness and natural period are scrutinized to better understand the pros and cons of the demountable precast frame system with fixed and pin base connections.

Research papers, Lincoln University

Earthquakes and other major disasters present communities and their authorities with an extraordinary challenge. While a lot can be done to prepare a city’s response in the event of a disaster, few cities are truly prepared for the initial impact, devastation, grief, and the seemingly formidable challenge of recovery. Many people find themselves overwhelmed with facing critical problems; ones which they have often never had experience with before. While the simple part is agreeing on a desired outcome for recovery, it appears the argument that exists between stakeholders is the conflicting ideas of How To effectively achieve the main objective. What I have identified as an important step toward collaborating on the How To of recovery is to identify the ways in which each discipline can most effectively contribute to the recovery. Landscape architecture is just one of the many disciplines (that should be) invovled in the How To of earthquake recovery. Canterbury has an incredible opportunity to set the benchmark for good practice in earthquake recovery. To make the most of this opportuntiy, it is critical that landscape architects are more effectively engaged in roles of recovery across a much broader spectrum of recovery activities. The overarching purpose of this research is to explore and provide insight to the current and potential of landscape architects in the earthquake recovery period in Canterbury, using international good practice as a benchmark. The research is aimed at stimulating and guiding landscape architects dealing with the earthquake recovery in Canterbury, while informing stakeholders: emergency managers, authorities, other disciplines and the wider community of themost effective role(s) for landscape architects in the recovery period.

Research papers, University of Canterbury Library

Over 6.3 million waste tyres are produced annually in New Zealand (Tyrewise, 2021), leading to socioeconomic and environmental concerns. The 2010-11 Canterbury Earthquake Sequence inflicted extensive damage to ~6,000 residential buildings, highlighting the need to improve the seismic resilience of the residential housing sector. A cost-effective and sustainable eco-rubber geotechnical seismic isolation (ERGSI) foundation system for new low-rise buildings was developed by the authors. The ERGSI system integrates a horizontal geotechnical seismic isolation (GSI) layer i.e., a deformable seismic energy dissipative filter made of granulated tyre rubber (GTR) and gravel (G) – and a flexible rubberised concrete raft footing. Geotechnical experimental and numerical investigations demonstrated the effectiveness of the ERGSI system in reducing the seismic demand at the foundation level (i.e., reduced peak ground acceleration) (Hernandez et al., 2019; Tasalloti et al., 2021). However, it is essential to ensure that the ERGSI system has minimal leaching attributes and does not result in long-term negative impacts on the environment.

Research papers, Lincoln University

New Zealand is one of the most highly urbanised countries in the world with well over 87 per cent of us living in 138 recognised urban centres, yet the number of people residing in inner city areas is proportionally very low. Householders have been exercising their preference for suburban or rural areas by opting for low density suburban environments. It is widely agreed that productivity and sustainability increase when people aggregate in the inner city, however there is a perceived trade-off between the density and liveability of an area. Achieving liveability in the inner city is concerned with reducing the pressures which emerge from higher population densities. Promoting inclusive societies, revitalising underutilised cityscapes, ensuring accessibility and fostering sense of place, are all elements essential to achieving liveable communities. The rebuild following the 2010 and 2011 Canterbury earthquakes provides Christchurch with an opportunity to shape a more environmentally sustainable, economically vibrant and liveable city. This research involves undertaking a case study of current inner city liveability measures and those provided for through the rebuild. A cross-case analysis with two of the world’s most liveable cities, Melbourne and Vancouver, exposes Christchurch’s potential shortcomings and reveals practical measures the city could implement in order to promote liveability.

Research papers, University of Canterbury Library

Meeting the Sustainable Development Goals by 2030 involves transformational change in the business of business, and social enterprises can lead the way in such change. We studied Cultivate, one such social enterprise in Christchurch, New Zealand, a city still recovering from the 2010/11 Canterbury earthquakes. Cultivate works with vulnerable youth to transform donated compost into garden vegetables for local restaurants and businesses. Cultivate’s objectives align with SDG concerns with poverty and hunger (1 & 2), social protection (3 & 4), and sustainable human settlements (6 & 11). Like many grant-supported organisations, Cultivate is required to track and measure its progress. Given the organisation’s holistic objectives, however, adequately accounting for its impact reporting is not straightforward. Our action research project engaged Cultivate staff and youth-workers to generate meaningful ways of measuring impact. Elaborating the Community Economy Return on Investment tool (CEROI), we explore how participatory audit processes can capture impacts on individuals, organisations, and the wider community in ways that extend capacities to act collectively. We conclude that Cultivate and social enterprises like it offer insights regarding how to align values and practices, commercial activity and wellbeing in ways that accrue to individuals, organisations and the broader civic-community.