Search

found 1382 results

Articles, UC QuakeStudies

A PDF copy of the site map for Canterbury Tales. Canterbury Tales was the main event of FESTA 2013; a carnivalesque procession through the central city, led by Free Theatre Christchurch. Sculptural installations and performances were part of the procession, which started at the Bridge of Remembrance and ended in Cathedral Square.

Articles, UC QuakeStudies

A PDF copy of the site map for CityUps. CityUps was a 'city of the future for one night only', and the main event of FESTA 2014. It was held on vacant sites at the intersection of Lichfield Street, Manchester Street and High Street. Architecture students from Unitec, The University of Auckland and CPIT collaborated with local businesses to create large-scale, temporary structures to entertain the public.

Images, eqnz.chch.2010

Photos taken in Lyttelton showing the demolition of various buildings following the February 22 earthquake. File reference: CCL-2011-05-20-Lyttelton-Demolition-P1120472 From the collection of Christchurch City Libraries.

Research papers, University of Canterbury Library

Hybrid broadband simulation methods typically compute high-frequency portion of ground-motions using a simplified-physics approach (commonly known as “stochastic method”) using the same 1D velocity profile, anelastic attenuation profile and site-attenuation (κ0) value for all sites. However, these parameters relating to Earth structure are known to vary spatially. In this study we modify this conventional approach for high-frequency ground-shaking by using site-specific input parameters (referred to as “site-specific”) and analyze improvements over using same parameters for all sites (referred to as “generic”). First, we theoretically understand how different 1D velocity profiles, anelastic attenuation profiles and site-attenuation (κ0) values affects the Fourier Acceleration Spectrum (FAS). Then, we apply site-specific method to simulate 10 events from the 2010-2011 Canterbury earthquake sequence to assess performance against the generic approach in predicting recorded ground-motions. Our initial results suggest that the site-specific method yields a lower simulation standard deviation than generic case.