Search

found 87 results

Images, UC QuakeStudies

Rubble from TJ's Kazbah on the corner of Marine Parade and Bowhill Road. The Ozone Hotel is visible in the foreground. The photographer comments, "A bike ride to New Brighton and the beach 3 weeks after the Feb 22 quake. Roads were still very rough and under reconstruction. There was a building on the corner, but not now".

Images, UC QuakeStudies

The damaged Ozone Hotel on Marine Parade. Fallen bricks lie on the ground in front of the building, which is surrounded by security fencing. The photographer comments, "A bike ride to New Brighton and the beach 3 weeks after the Feb 22 quake. Roads were still very rough and under reconstruction. Some buildings are still standing. but don't look too healthy".

Images, UC QuakeStudies

A sign on a fence on Marine Parade in North New Brighton reads "We need your support. We say yes to a new local high school. Northeast Secondary Education Committee." The photographer comments, "A bike ride to New Brighton and the beach 3 weeks after the Feb 22 quake. Roads were still very rough and under reconstruction. I think this issue may be shelved for a while. Unless Shirley Boys High and Avonside Girls High can't be rebuilt, of course".

Research papers, Victoria University of Wellington

The suburb of New Brighton in Christchurch Aotearoa was once a booming retail sector until the end of its exclusivity to Saturday shopping in 1980 and the aftermath of the devastating 2011 Christchurch earthquake. The suburb of New Brighton was hit particularly hard and fell into economic collapse, partly brought on by the nature of its economic structure. This implosion created an urban crisis where people and businesses abandoned the suburb and its once-booming commercial economy. As a result, New Brighton has been left with the residue of abandoned infrastructure and commercial propaganda such as billboards, ATM machines, commercial facades, and shopping trolleys that as abandoned fragments, no longer contribute to culture, society and the economy. This design-led research investigation proposes to repurpose the broken objects that were left behind. By strategically selecting objects that are symbols of the root cause of the economic devastation, the repurposed and re-contextualised fragments will seek to allegorically expose the city’s destructive economic narrative, while providing a renewed sense of place identity for the people. This design-led thesis investigation argues that the seemingly innocuous icons of commercial industry, such as billboards, ATM machines, commercial facades, and shopping trolleys, are intended to act as lures to encourage people to spend money; ultimately, these urban and architectural lures can contribute to economic devastation. The aim of this investigation is to repurpose abandoned fragments of capitalist infrastructure in ways that can help to unveil new possibilities for a disrupted community and enhance their awareness of what led to the urban disruption. The thesis proposes to achieve this research aim by exploring three principal research objectives: 1) to assimilate and re-contextualise disconnected urban fragments into new architectural interventions; 2) to anthropomorphise these new interventions so that they are recognisable as architectural ‘inhabitants’, the storytellers of the urban context; and 3) to curate these new architectural interventions in ways that enable a community-scale allegorical and didactic experience to be recognised.

Research papers, The University of Auckland Library

The skills agenda has grown in prominence within the construction industry. Indeed, skill shortages have been recognised as a perennial problem the construction industry faces, especially after a major disaster. In the aftermath of the Christchurch earthquakes, small and medium construction companies were at the forefront of rebuilding efforts. While the survival of these companies was seen to be paramount, and extreme events were seen to be a threat to survival, there is a dearth of research centring on their resourcing capacity following a disaster. This research aims to develop workforce resourcing best practice guidelines for subcontractors in response to large disaster reconstruction demands. By using case study methods, this research identified the challenges faced by subcontracting businesses in resourcing Christchurch recovery projects; identified the workforce resourcing strategies adopted by subcontracting businesses in response to reconstruction demand; and developed a best practice guideline for subcontracting businesses in managing the workforce at the organisational and/or project level. This research offers a twofold contribution. First, it provides an overview of workforce resourcing practices in subcontracting businesses. This understanding has enabled the development of a more practical workforce resourcing guideline for subcontractors. Second, it promotes evidence-informed decision-making in subcontractors’ workforce resourcing. Dynamics in workforce resourcing and their multifaceted interactions were explicitly depicted in this research. More importantly, this research provides a framework to guide policy development in producing a sustainable solution to skill shortages and establishing longterm national skill development initiatives. Taken together, this research derives a research agenda that maps under-explored areas relevant for further elaboration and future research. Prospective researchers can use the research results in identifying gaps and priority areas in relation to workforce resourcing.

Research papers, The University of Auckland Library

The seismic tremor that shook Christchurch on February 22, 2011, not only shattered buildings but also the spirit of the city’s residents. Amidst the ruins, this design-focused thesis unravels two intertwining narratives, each essential to the city’s resurrection. At its core, this thesis probes the preservation of Christchurch’s memory and character, meticulously chronicling the lost heritage architecture and the subsequent urban metamorphosis. Beyond bricks and mortar, it also confronts the silent aftershocks - the pervasive mental health challenges stemming from personal losses and the disfigured cityscape. As a native of Christchurch, intimately connected to its fabric, my lens reflects not just on the architectural reconstruction but also on the emotional reconstruction. My experience as an autistic individual, a recently discovered facet of my identity, infuses this design journey with a distinct prism through which I perceive and interact with the world. The colourful sketches that drive the design process aren’t mere illustrations but manifestations of my interpretation of spaces and concepts, evoking joy and vitality—a testament to embracing diversity in design. Drawing parallels between healing my own traumas with my colourful and joyful neurodivergent worldview, I’ve woven this concept into proposals aimed at healing the city through whimsy, joy, and vibrant colours. Personal experiences during and post-earthquakes profoundly shape my design proposals. Having navigated the labyrinth of my own mental health amid the altered cityscape, I seek avenues for reconciliation, both personal and communal. The vibrant sketches and designs presented in this thesis encapsulate this vision—a fusion of vivid, unconventional interpretations and a dedication to preserving the essence of the original cityscape while still encouraging movement into the future.

Research Papers, Lincoln University

Memorial design in the West has been explored in depth (Stevens and Franck, 2016; Williams, 2007), and for landscape architects it presents opportunities and challenges. However, there is little in the English language literature about memorial design in China. How have Chinese designers responded to the commemorative settings of war and disaster? This study will adopt the method of case study to analyse two of the most representative memorials in China: Nanjing Massacre Memorial Hall (war) and Tangshan Earthquake Memorial Hall (disaster). Both landscapes have undergone three or four renovations and extensions in the last four decades, demonstrating the practical effects of the Chinese landscape theory. These examples of responses to trauma through memorial landscape interventions are testimonies to the witnesses, victims, abusers, ordinary people, youth and the place where the tragedy took place. This study will explore the reconstruction and expansion of the two memorials under the background of China's policies on memorial landscapes in different periods, as well as their functions of each stage. The research will examine how existing Chinese memorial theories exhibit unique responses at different times in response to the sadness and needs experienced by different users. Key Words:memorial landscape; memorial language; victims; descriptive; architecture; experence; disaster; memorial hall; landscape development; Chinese memorial; war.

Research papers, University of Canterbury Library

Nowadays the telecommunication systems’ performance has a substantial impact on our lifestyle. Their operationality becomes even more substantial in a post-disaster scenario when these services are used in civil protection and emergency plans, as well as for the restoration of all the other critical infrastructure. Despite the relevance of loss of functionality of telecommunication networks on seismic resilience, studies on their performance assessment are few in the literature. The telecommunication system is a distributed network made up of several components (i.e. ducts, utility holes, cabinets, major and local exchanges). Given that these networks cover a large geographical area, they can be easily subjected to the effects of a seismic event, either the ground shaking itself, or co-seismic events such as liquefaction and landslides. In this paper, an analysis of the data collected after the 2010-2011 Canterbury Earthquake Sequence (CES) and the 2016 Kaikoura Earthquake in New Zealand is conducted. Analysing these data, information gaps are critically identified regarding physical and functional failures of the telecommunication components, the timeline of repair/reconstruction activities and service recovery, geotechnical tests and land planning maps. Indeed, if these missing data were presented, they could aid the assessment of the seismic resilience. Thus, practical improvements in the post-disaster collection from both a network and organisational viewpoints are proposed through consultation of national and international researchers and highly experienced asset managers from Chorus. Finally, an outline of future studies which could guide towards a more resilient seismic performance of the telecommunication network is presented.

Research papers, University of Canterbury Library

Seismic isolation is an effective technology for significantly reducing damage to buildings and building contents. However, its application to light-frame wood buildings has so far been unable to overcome cost and technical barriers such as susceptibility to movement during high-wind loading. The precursor to research in the field of isolation of residential buildings was the 1994 Northridge Earthquake (6.7 MW) in the United States and the 1995 Kobe Earthquake (6.9 MW) in Japan. While only a small number of lives were lost in residential buildings in these events, the economic impact was significant with over half of earthquake recovery costs given to repair and reconstruction of residential building damage. A value case has been explored to highlight the benefits of seismically isolated residential buildings compared to a standard fixed-base dwellings for the Wellington region. Loss data generated by insurance claim information from the 2011 Christchurch Earthquake has been used by researchers to determine vulnerability functions for the current light-frame wood building stock. By further considering the loss attributed to drift and acceleration sensitive components, and a simplified single degree of freedom (SDOF) building model, a method for determining vulnerability functions for seismic isolated buildings was developed. Vulnerability functions were then applied directly in a loss assessment using the GNS developed software, RiskScape. Vulnerability was shown to dramatically reduce for isolated buildings compared to an equivalent fixed-base building and as a result, the monetary savings in a given earthquake scenario were significant. This work is expected to drive further interest for development of solutions for the seismic isolation of residential dwellings, of which one option is further considered and presented herein.

Videos, UC QuakeStudies

A video of a presentation by Dr Scott Miles during the Community Resilience Stream of the 2016 People in Disasters Conference. The presentation is titled, "A Community Wellbeing Centric Approach to Disaster Resilience".The abstract for this presentation reads as follows: A higher bar for advancing community disaster resilience can be set by conducting research and developing capacity-building initiatives that are based on understanding and monitoring community wellbeing. This presentation jumps off from this view, arguing that wellbeing is the most important concept for improving the disaster resilience of communities. The presentation uses examples from the 2010 and 2011 Canterbury earthquakes to illustrate the need and effectiveness of a wellbeing-centric approach. While wellbeing has been integrated in the Canterbury recovery process, community wellbeing and resilience need to guide research and planning. The presentation unpacks wellbeing in order to synthesize it with other concepts that are relevant to community disaster resilience. Conceptualizing wellbeing as either the opportunity for or achievement of affiliation, autonomy, health, material needs, satisfaction, and security is common and relatively accepted across non-disaster fields. These six variables can be systematically linked to fundamental elements of resilience. The wellbeing variables are subject to potential loss, recovery, and adaptation based on the empirically established ties to community identity, such as sense of place. Variables of community identity are what translate the disruption, damage, restoration, reconstruction, and reconfiguration of a community's different critical services and capital resources to different states of wellbeing across a community that has been impacted by a hazard event. With reference to empirical research and the Canterbury case study, the presentation integrates these insights into a robust framework to facilitate meeting the challenge of raising the standard of community disaster resilience research and capacity building through development of wellbeing-centric approaches.

Research Papers, Lincoln University

Natural hazards continue to have adverse effects on communities and households worldwide, accelerating research on proactively identifying and enhancing characteristics associated with resilience. Although resilience is often characterized as a return to normal, recent studies of postdisaster recovery have highlighted the ways in which new opportunities can emerge following disruption, challenging the status quo. Conversely, recovery and reconstruction may serve to reinforce preexisting social, institutional, and development pathways. Our understanding of these dynamics is limited however by the small number of practice examples, particularly for rural communities in developed nations. This study uses a social–ecological inventory to document the drivers, pathways, and mechanisms of resilience following a large-magnitude earthquake in Kaikōura, a coastal community in Aotearoa New Zealand. As part of the planning and implementation phase of a multiyear project, we used the tool as the basis for indepth and contextually sensitive analysis of rural resilience. Moreover, the deliberate application of social–ecological inventory was the first step in the research team reengaging with the community following the event. The inventory process provided an opportunity for research partners to share their stories and experiences and develop a shared understanding of changes that had taken place in the community. Results provide empirical insight into reactions to disruptive change associated with disasters. The inventory also informed the design of targeted research collaborations, established a platform for longer-term community engagement, and provides a baseline for assessing longitudinal changes in key resilience-related characteristics and community capacities. Findings suggest the utility of social–ecological inventory goes beyond natural resource management, and that it may be appropriate in a range of contexts where institutional, social, and economic restructuring have developed out of necessity in response to felt or anticipated external stressors.

Research papers, The University of Auckland Library

The research presented in this thesis investigated the environmental impacts of structural design decisions across the life of buildings located in seismic regions. In particular, the impacts of expected earthquake damage were incorporated into a traditional life cycle assessment (LCA) using a probabilistic method, and links between sustainable and resilient design were established for a range of case-study buildings designed for different seismic performance objectives. These links were quantified using a metric herein referred to as the seismic carbon risk, which represents the expected environmental impacts and resource use indicators associated with earthquake damage during buildings’ life. The research was broken into three distinct parts: (1) a city-level evaluation of the environmental impacts of demolitions following the 2010/2011 Canterbury earthquake sequence in New Zealand, (2) the development of a probabilistic framework to incorporate earthquake damage into LCA, and (3) using case-study buildings to establish links between sustainable and resilient design. The first phase of the research focused on the environmental impacts of demolitions in Christchurch, New Zealand following the 2010/2011 Canterbury Earthquake Sequence. This large case study was used to investigate the environmental impact of the demolition of concrete buildings considering the embodied carbon and waste stream distribution. The embodied carbon was considered here as kilograms of CO2 equivalent that occurs on production, construction, and waste management stage. The results clearly demonstrated the significant environmental impacts that can result from moderate and large earthquakes in urban areas, and the importance of including environmental considerations when making post-earthquake demolition decisions. The next phase of the work introduced a framework for incorporating the impacts of expected earthquake damage based on a probabilistic approach into traditional LCA to allow for a comparison of seismic design decisions using a carbon lens. Here, in addition to initial construction impacts, the seismic carbon risk was quantified, including the impacts of seismic repair activities and total loss scenarios assuming reconstruction in case of non-reparability. A process-based LCA was performed to obtain the environmental consequence functions associated with structural and non-structural repair activities for multiple environmental indicators. In the final phase of the work, multiple case-study buildings were used to investigate the seismic consequences of different structural design decisions for buildings in seismic regions. Here, two case-study buildings were designed to multiple performance objectives, and the upfront carbon costs, and well as the seismic carbon risk across the building life were compared. The buildings were evaluated using the framework established in phase 2, and the results demonstrated that the seismic carbon risk can significantly be reduced with only minimal changes to the upfront carbon for buildings designed for a higher base shear or with seismic protective systems. This provided valuable insight into the links between resilient and sustainable design decisions. Finally, the results and observations from the work across the three phases of research described above were used to inform a discussion on important assumptions and topics that need to be considered when quantifying the environmental impacts of earthquake damage on buildings. These include: selection of a non-repairable threshold (e.g. a value beyond which a building would be demolished rather than repaired), the time value of carbon (e.g. when in the building life the carbon is released), the changing carbon intensity of structural materials over time, and the consideration of deterministic vs. probabilistic results. Each of these topics was explored in some detail to provide a clear pathway for future work in this area.

Research papers, The University of Auckland Library

The supply of water following disasters has always been of significant concern to communities. Failure of water systems not only causes difficulties for residents and critical users but may also affect other hard and soft infrastructure and services. The dependency of communities and other infrastructure on the availability of safe and reliable water places even more emphasis on the resilience of water supply systems. This thesis makes two major contributions. First, it proposes a framework for measuring the multifaceted resilience of water systems, focusing on the significance of the characteristics of different communities for the resilience of water supply systems. The proposed framework, known as the CARE framework, consists of eight principal activities: (1) developing a conceptual framework; (2) selecting appropriate indicators; (3) refining the indicators based on data availability; (4) correlation analysis; (5) scaling the indicators; (6) weighting the variables; (7) measuring the indicators; and (8) aggregating the indicators. This framework allows researchers to develop appropriate indicators in each dimension of resilience (i.e., technical, organisational, social, and economic), and enables decision makers to more easily participate in the process and follow the procedure for composite indicator development. Second, it identifies the significant technical, social, organisational and economic factors, and the relevant indicators for measuring these factors. The factors and indicators were gathered through a comprehensive literature review. They were then verified and ranked through a series of interviews with water supply and resilience specialists, social scientists and economists. Vulnerability, redundancy and criticality were identified as the most significant technical factors affecting water supply system robustness, and consequently resilience. These factors were tested for a scenario earthquake of Mw 7.6 in Pukerua Bay in New Zealand. Four social factors and seven indicators were identified in this study. The social factors are individual demands and capacities, individual involvement in the community, violence level in the community, and trust. The indicators are the Giving Index, homicide rate, assault rate, inverse trust in army, inverse trust in police, mean years of school, and perception of crime. These indicators were tested in Chile and New Zealand, which experienced earthquakes in 2010 and 2011 respectively. The social factors were also tested in Vanuatu following TC Pam, which hit the country in March 2015. Interestingly, the organisational dimension contributed the largest number of factors and indicators for measuring water supply resilience to disasters. The study identified six organisational factors and 17 indicators that can affect water supply resilience to disasters. The factors are: disaster precaution; predisaster planning; data availability, data accessibility and information sharing; staff, parts, and equipment availability; pre-disaster maintenance; and governance. The identified factors and their indicators were tested for the case of Christchurch, New Zealand, to understand how organisational capacity affected water supply resilience following the earthquake in February 2011. Governance and availability of critical staff following the earthquake were the strongest organisational factors for the Christchurch City Council, while the lack of early warning systems and emergency response planning were identified as areas that needed to be addressed. Economic capacity and quick access to finance were found to be the main economic factors influencing the resilience of water systems. Quick access to finance is most important in the early stages following a disaster for response and restoration, but its importance declines over time. In contrast, the economic capacity of the disaster struck area and the water sector play a vital role in the subsequent reconstruction phase rather than in the response and restoration period. Indicators for these factors were tested for the case of the February 2011 earthquake in Christchurch, New Zealand. Finally, a new approach to measuring water supply resilience is proposed. This approach measures the resilience of the water supply system based on actual water demand following an earthquake. The demand-based method calculates resilience based on the difference between water demand and system capacity by measuring actual water shortage (i.e., the difference between water availability and demand) following an earthquake.