Search

found 95 results

Images, UC QuakeStudies

Silver Awar, presented to Erin Jackson (from Christchurch), she acted as the Big Top manager during student volunteer army operations. Pictured here with Vice-Chancellor Dr Rod Carr, Prime Minister John Key and Minister for Canterbury Earthquake Recovery Gerry Brownlee.

Images, UC QuakeStudies

Silver Award presented to Erin Jackson (from Christchurch), she acted as the Big Top manager during student volunteer army operations. Pictured here with Vice-Chancellor Dr Rod Carr, Prime Minister John Key and Minister for Canterbury Earthquake Recovery Gerry Brownlee.

Images, UC QuakeStudies

A powhiri performed by Ngai Tahu elders to welcome workers of the Stronger Christchurch Infrastructure Rebuild Team (SCIRT). Mayor Bob Parker is standing to the right. Reverend Peter Beck and Earthquake Minister Gerry Brownlee are also present. The ceremony was held in Burwood Park.

Images, UC QuakeStudies

A powhiri performed by Ngai Tahu elders to welcome workers of the Stronger Christchurch Infrastructure Rebuild Team (SCIRT). Mayor Bob Parker is standing to the right. Reverend Peter Beck and Earthquake Minister Gerry Brownlee are also present. The ceremony was held in Burwood Park.

Images, UC QuakeStudies

A photograph of the photocopy template for the Christchurch City Council's yellow sticker. The sticker was used by the Civil Defence after the 2010 and 2011 earthquakes to indicate that a building had been inspected and that structural damage or other safety hazards had been found. The sticker states that there should be no entry to the building, 'except on essential business'. It also states that 'earthquake aftershocks present danger' and that people who enter must do so at their own risk.

Images, UC QuakeStudies

A yellow sticker on the door of a house in Worcester Street reading, "Restricted use. No entry except on essential business. Warning: This building has been damaged and its structural safety is questionable. Earthquake aftershocks present danger. Enter only at own risk. Subsequent events may result in increased damage and danger, changing this assessment. Reinspection may be required. The damage is as described below: partial collapse of longitudinal walls". Following on from this are the specific conditions that must be complied with to enable entry into the property, the inspector's identification details, and the date and time the building was inspected. At the bottom the form reads, "Do not remove this placard. Placed by order of the territorial authority Christchurch City Council".

Images, Alexander Turnbull Library

The globe is depicted as a hand grenade; the skeletal remains of a hand reach out to 'pull the pin'. Context - the fragility of the world from a New Zealand point of view seen in the light of the Christchurch earthquakes of 4 September 2010 and 22 February 2011 and the Japanese earthquake and tsunami of 22 February 2011 and the present threat of a nuclear catastrophe caused by damaged nuclear power plants. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

A rat in a business suit representing 'insurance companies' carries a briefcase labelled 'Total replacement policies' and follows a fellow rat into a large hole 'loop holes' that leads into a collapsed building. The rat says 'Woo-hoo! Home sweet home!' Context - Problems for people whose houses were damaged in the Christchurch earthquakes. One of the options presented to residents in the red zone, ideal for people with replacement policies, was the government bought your land, and you dealt directly with your insurers about your house. However they got a shock when insurers told them they won't replace their homes, they'll only repair them, even though they're earmarked for certain demolition. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

On 4 September 2010, people in Canterbury were shaken from their beds by a major earthquake. This report tells the story of the University of Canterbury (UC), its staff and its students, as they rose to the many challenges presented by the earthquake. This report however, is intended to do more than just acknowledge their hard work and determination; it also critically reflects on the things that worked well and the aspects of the response that, in hindsight, could have been done better. Luckily major events such as this earthquake do not happen every day. UC has benefited from the many universities around the world that have shared their experiences of previous disasters. We hope that this report serves to pass forward the favour and enables others to benefit from the lessons that we have learnt from this event.

Images, Alexander Turnbull Library

The cartoon shows members of the 'Japan Seismic Institute studying an earthquake graph; one of them says 'Where was that Kiwi moonman when we wanted him?' Depicted also is thew 'moonman' Ken Ring as a wizard studying an astrological chart. Behind them all Japan is depicted as a devastated wasteland. Context - the Japanese earthquake and tsunami of 4th March 2011 and the present threat of a nuclear catastrophe. Also the so-called Moon Man, astrologer Ken Ring, who predicted that Christchurch would be hit by a huge earthquake today (20 March 2011). His claims have terrified Cantabrians and led to people fleeing Christchurch. Quantity: 1 digital cartoon(s).

Research papers, The University of Auckland Library

The Christchurch region of New Zealand experienced a series of major earthquakes and aftershocks between September 2010 and June 2011 which caused severe damage to the city’s infrastructure. The performance of tilt-up precast concrete buildings was investigated and initial observations are presented here. In general, tilt-up buildings performed well during all three major earthquakes, with mostly only minor, repairable damage occurring. For the in-plane loading direction, both loadbearing and cladding panels behaved exceptionally well, with no significant damage or failure observed in panels and their connections. A limited number of connection failures occurred due to large out-of-plane panel inertia forces. In several buildings, the connections between the panel and the internal structural frame appeared to be the weakest link, lacking in both strength and ductility. This weakness in the out-of-plane load path should be prevented in future designs.

Research papers, The University of Auckland Library

Unreinforced masonry (URM) buildings have repeatedly been shown to perform poorly in large magnitude earthquakes, with both New Zealand and Australia having a history of past earthquakes that have resulted in fatalities due to collapsed URM buildings. A comparison is presented here of the URM building stock and the seismic vulnerability of Christchurch and Adelaide in order to demonstrate the relevance to Australian cities of observations in Christchurch resulting from the 2010/2011 Canterbury earthquake swarm. It is shown that the materials, architecture and hence earthquake strength of URM buildings in both countries is comparable and that Adelaide and other cities of Australia have seismic vulnerability sufficient to cause major damage to their URM buildings should a design level earthquake occur. Such an earthquake is expected to cause major building damage, and fatalities should be expected.

Images, Alexander Turnbull Library

A man struggles to hold upright a rigid and obstinate man who is shaking like an earthquake. The man pushing says 'That's NOT what we meant by quake strengthening Aaron!' Context: Aaron Gilmore is a councillor, a new councillor, and has been bucking the trend when it comes to voting for the CEO Tony Marryatt who is tied up with CERA, the canterbury earthquake authority, by publicly making his personal views known to the public on radio etc before the voting has been cast. Councillors are meant to present an unbiased facade when it comes to voting. Gilmore was talking to the media and in obvious support of Marryatt....the result being that there was pressure on Gilmore to abstain from voting and stand down from the process. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Text at top reads 'Some Christchurch suburbs to move?... The cartoon shows three complete suburbs that have been dug up and are now being flown by helicopters attached to tall towers to their new spots on the Australian Gold Coast. Someone in one of the houses on the move yells 'Woohoo! Yeehaa! Well... As NZ and Ozzie are such great mates... Gold Coast here we come!' Context - In some cases where whole communities have to move because the earthquakes have made it impossible for them to remain in their present locations, many in the community have elected to try to move and relocate together in order to retain their old neighbours and community spirit. Quantity: 1 digital cartoon(s).

Research papers, The University of Auckland Library

The sequence of earthquakes that has greatly affected Christchurch and Canterbury since September 2010 has again demonstrated the need for seismic retrofit of heritage unreinforced masonry buildings. Commencing in April 2011, the damage to unreinforced stone masonry buildings in Christchurch was assessed and recorded with the primary objective being to document the seismic performance of these structures, recognising that they constitute an important component of New Zealand’s heritage architecture. A damage statistics database was compiled by combining the results of safety evaluation placarding and post-earthquake inspections, and it was determined that the damage observed was consistent with observations previously made on the seismic performance of stone masonry structures in large earthquakes. Details are also given on typical building characteristics and on failure modes observed. Suggestions on appropriate seismic retrofit and remediation techniques are presented, in relation also to strengthening interventions that are typical for similar unreinforced stone masonry structures in Europe.

Images, Alexander Turnbull Library

Finance Minister Bill English holds a large axe that represents the 'budget' and says 'I wanted to retrieve all my spending tools, but, sadly, with allotted time short, I could only grab this!..' He is standing outside the barrier that surrounds the Christchurch CBD. Context - The Christchurch central business district has been largely out of bounds to anyone but those dealing with the after-effects of the earthquake of February 22 but business owners have been allowed restricted access to retrieve gear and belongings. The 2011 budget looks as though it will be focused on paring everything down because of the sad state of New Zealand's economy at present (made worse by the need to rebuild Christchurch), hence the axe. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

Following the September 2010 earthquake and the closure of a number of campus libraries, library staff at the University of Canterbury was forced to rethink how they connected with their users. The established virtual reference service now meant library staff could be contacted regardless of their physical location. After the February earthquake, with University library closures ranging from 3 weeks to indefinite, this service came into its own as a vital communication tool. It facilitated contact between the library and both students and academics, as well as proving invaluable as a means for library staff to locate and communicate with each other. Transcripts from our post-earthquake interactions with users were analyzed using NVivo and will be presented in poster format showing the increase in usage of the service following the earthquakes, who used the service most, and the numbers and types of questions received. Our virtual reference tool was well used in the difficult post-earthquake periods and we can see this usage continuing as university life returns to normal.

Research papers, The University of Auckland Library

As part of the 'Project Masonry' Recovery Project funded by the New Zealand Natural Hazards Research Platform, commencing in March 2011, an international team of researchers was deployed to document and interpret the observed earthquake damage to masonry buildings and to churches as a result of the 22nd February 2011 Christchurch earthquake. The study focused on investigating commonly encountered failure patterns and collapse mechanisms. A brief summary of activities undertaken is presented, detailing the observations that were made on the performance of and the deficiencies that contributed to the damage to approximately 650 inspected unreinforced clay brick masonry (URM) buildings, to 90 unreinforced stone masonry buildings, to 342 reinforced concrete masonry (RCM) buildings, to 112 churches in the Canterbury region, and to just under 1100 residential dwellings having external masonry veneer cladding. In addition, details are provided of retrofit techniques that were implemented within relevant Christchurch URM buildings prior to the 22nd February earthquake and brief suggestions are provided regarding appropriate seismic retrofit and remediation techniques for stone masonry buildings. http://www.nzsee.org.nz/publications/nzsee-quarterly-bulletin/

Research papers, University of Canterbury Library

In order to provide information related to seismic vulnerability of non-ductile reinforced concrete (RC) frame buildings, and as a complementary investigation on innovative feasible retrofit solutions developed in the past six years at the University of Canterbury on pre-19170 reinforced concrete buildings, a frame building representative of older construction practice was tested on the shake table. The specimen, 1/2.5 scale, consists of two 3-storey 2-bay asymmetric frames in parallel, one interior and one exterior, jointed together by transverse beams and floor slabs. The as-built (benchmark) specimen was first tested under increasing ground motion amplitudes using records from Loma Prieta Earthquake (California, 1989) and suffered significant damage at the upper floor, most of it due to lap splices failure. As a consequence, in a second stage, the specimen was repaired and modified by removing the concrete in the lap splice region, welding the column longitudinal bars, replacing the removed concrete with structural mortar, and injecting cracks with epoxy resin. The modified as-built specimen was then tested using data recorded during Darfield (New Zealand, 2010) and Maule (Chile, 2010) Earthquakes, with whom the specimen showed remarkably different responses attributed to the main variation in frequency content and duration. In this contribution, the seismic performance of the three series of experiments are presented and compared.

Research papers, The University of Auckland Library

In the early morning of 4th September 2010 the region of Canterbury, New Zealand, was subjected to a magnitude 7.1 earthquake. The epicentre was located near the town of Darfield, 40 km west of the city of Christchurch. This was the country’s most damaging earthquake since the 1931 Hawke’s Bay earthquake (GeoNet, 2010). Since 4th September 2010 the region has been subjected to thousands of aftershocks, including several more damaging events such as a magnitude 6.3 aftershock on 22nd February 2011. Although of a smaller magnitude, the earthquake on 22nd February produced peak ground accelerations in the Christchurch region three times greater than the 4th September earthquake and in some cases shaking intensities greater than twice the design level (GeoNet, 2011; IPENZ, 2011). While in September 2010 most earthquake shaking damage was limited to unreinforced masonry (URM) buildings, in February all types of buildings sustained damage. Temporary shoring and strengthening techniques applied to buildings following the Darfield earthquake were tested in February 2011. In addition, two large aftershocks occurred on 13th June 2011 (magnitudes 5.7 and 6.2), further damaging many already weakened structures. The damage to unreinforced and retrofitted clay brick masonry buildings in the 4th September 2010 Darfield earthquake has already been reported by Ingham and Griffith (2011) and Dizhur et al. (2010b). A brief review of damage from the 22nd February 2011 earthquake is presented here

Images, Alexander Turnbull Library

The cartoon shows Christchurch obscured by ash. Text reads 'Christchurch recovery package' and below are the words 'Cash cloud'. Context - Beginning on the 6th of June the Puyehue-Cordon Caulle volcano has been erupting for more than a week. Drifting ash clouds have been interupting flights. On Thursday 23 June Prime Minister John Key, Canterbury Earthquake Recovery Minister Gerry Brownlee and representatives from engineering consultants Tonkin & Taylor announced the first part of the Government's long-awaited land report that revealed the fate of up to 5000 quake-damaged homes. These homes were in the 'red zone'. But 10,500 owners in the orange zone were left in limbo, with their properties requiring further assessment. One of the options presented to residents in the red zone, ideal for people with replacement policies, was the government bought your land, and you dealt directly with your insurers about your house. However they got a shock when insurers told them they won't replace their homes, they'll only repair them, even though they're earmarked for certain demolition. Quantity: 1 digital cartoon(s).

Research Papers, Lincoln University

There is a critical strand of literature suggesting that there are no ‘natural’ disasters (Abramovitz, 2001; Anderson and Woodrow, 1998; Clarke, 2008; Hinchliffe, 2004). There are only those that leave us – the people - more or less shaken and disturbed. There may be some substance to this; for example, how many readers recall the 7.8 magnitude earthquake centred in Fiordland in July 2009? Because it was so far away from a major centre and very few people suffered any consequences, the number is likely to be far fewer than those who remember (all too vividly) the relatively smaller 7.1 magnitude Canterbury quake of September 4th 2010 and the more recent 6.3 magnitude February 22nd 2011 event. One implication of this construction of disasters is that seismic events, like those in Canterbury, are as much socio-political as they are geological. Yet, as this paper shows, the temptation in recovery is to tick boxes and rebuild rather than recover, and to focus on hard infrastructure rather than civic expertise and community involvement. In this paper I draw upon different models of community engagement and use Putnam’s (1995) notion of ‘social capital’ to frame the argument that ‘building bridges’ after a disaster is a complex blend of engineering, communication and collaboration. I then present the results of a qualitative research project undertaken after the September 4th earthquake. This research helps to illustrate the important connections between technical rebuilding, social capital, recovery processes and overall urban resilience.

Research Papers, Lincoln University

Earthquakes and other major disasters present communities and their authorities with an extraordinary challenge. While a lot can be done to prepare a city’s response in the event of a disaster, few cities are truly prepared for the initial impact, devastation, grief, and the seemingly formidable challenge of recovery. Many people find themselves overwhelmed with facing critical problems; ones which they have often never had experience with before. While the simple part is agreeing on a desired outcome for recovery, it appears the argument that exists between stakeholders is the conflicting ideas of How To effectively achieve the main objective. What I have identified as an important step toward collaborating on the How To of recovery is to identify the ways in which each discipline can most effectively contribute to the recovery. Landscape architecture is just one of the many disciplines (that should be) invovled in the How To of earthquake recovery. Canterbury has an incredible opportunity to set the benchmark for good practice in earthquake recovery. To make the most of this opportuntiy, it is critical that landscape architects are more effectively engaged in roles of recovery across a much broader spectrum of recovery activities. The overarching purpose of this research is to explore and provide insight to the current and potential of landscape architects in the earthquake recovery period in Canterbury, using international good practice as a benchmark. The research is aimed at stimulating and guiding landscape architects dealing with the earthquake recovery in Canterbury, while informing stakeholders: emergency managers, authorities, other disciplines and the wider community of themost effective role(s) for landscape architects in the recovery period.