Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield. Damaged spire-tops lie on the ground after being removed from the church tower".
Ground heaving on the faultline from which the Saturday 4 September 2010 earthquake originated.
This paper provides an overview of the salient aspects of the dense array of ground motions observed in the 4 September 2010 Darfield and 22 February 2011 Christchurch earthquakes. Particular attention is given to inferred physical reasons for the observed ground motions, which include: (i) source features such as forward directivity effects; (ii) The effects of the Canterbury Plains sedimentary basin on basin-generated surface waves, and waveguide effects through the region; and (iii) the importance of local site response as evidenced by observations of large long period amplification and liquefaction. The significance of vertical ground motion intensity is also examined.
Small, tight-knit communities, are complex to manage from outside during a disaster. The township of Lyttelton, New Zealand, and the communities of Corsair Bay, Cass Bay, and Rapaki to the east, are especially more so difficult due to the terrain that encloses them, which caused them to be cut-off from Christchurch, the largest city in the South Island, barely 10 km away, after the Mw 7.1 Darfield Earthquake and subsequent Canterbury Earthquake Sequence. Lyttelton has a very strong and deep-rooted community spirit that draws people to want to be a part of Lyttelton life. It is predominantly residential on the slopes, with retail space, service and light industry nestled near the harbour. It has heritage buildings stretching back to the very foundation of Canterbury yet hosts the largest, modern deep-water port for the region. This study contains two surveys: one circulated shortly before the Darfield Earthquake and one circulated in July 2011, after the Christchurch and Sumner Earthquakes. An analytical comparison of the participants’ household preparedness for disaster before the Darfield Earthquake and after the Christchurch and Sumner Earthquakes was performed. A population spatiotemporal distribution map was produced that shows the population in three-hourly increments over a week to inform exposure to vulnerability to natural hazards. The study went on to analyse the responses of the participants in the immediate period following the Chrsitchurch and Sumner Earthquakes, including their homeward and subsequent journeys, and the decision to evacuate or stay in their homes. Possible predictors to a decision to evacuate some or all members of the household were tested. The study also asked participants’ views on the events since September 2010 for analysis.
The ground literally opened up! On the previously unknown faultline along which the Saturday 4 September 2010 earthquake originated.
The ground literally opened up! On the previously unknown faultline along which the Saturday 4 September 2010 earthquake originated.
The ground literally opened up! On the previously unknown faultline along which the Saturday 4 September 2010 earthquake originated.
The ground literally opened up! On the previously unknown faultline along which the Saturday 4 September 2010 earthquake originated.
The Darfield earthquake caused widespread damage in the Canterbury region of New Zealand, with the majority of damage resulting from liquefaction and lateral spreading. One of the worst hit locations was the small town of Kaiapoi north of Christchurch, an area that has experienced liquefaction during past events and has been identified as highly susceptible to liquefaction. The low lying town sits on the banks of the Kaiapoi River, once a branch of the Waimakariri, a large braided river transporting gravelly sediment. The Waimakariri has been extensively modified both by natural and human processes, consequently many areas in and around the town were once former river channels.
Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield. (L to R): Builder Kevin Deam and St. Mary's parishioner Craig Perkins inspect a damaged spire on the church tower".
At Greendale Faultline on Highfield Road in mid-Canterbury, where the magnitude 7.1 earthquake on 4 September 2010 originated.
Heaving and subsidence on the faultline left scars where the magnitude 7.1 earthquake on Saturday 4 September 2010 originated.
The latest (but temporary) tourist attraction in mid-Canterbury! This was the previously unknown faultline where the Saturday 4 September 2010 earthquake originated.
At Greendale Faultline on Highfield Road in mid-Canterbury, where the magnitude 7.1 earthquake on 4 September 2010 originated.
At Greendale Faultline on Highfield Road in mid-Canterbury, where the magnitude 7.1 earthquake on 4 September 2010 originated.
Tension cracks at least 300 mm deep, on the previously unknown faultline from which the Saturday 4 September 2010 earthquake originated.
Rolleston/Burnham, South Island, NZ This used to be a perfectly straight and flat road!
Photograph captioned by Fairfax, "New Zealand's Governor-General Anand Satyanand and his wife Susan Satyanand visited sites around earthquake-stricken Canterbury today. Satyanand at the epicentre near Darfield where the new fault line can be clearly seen across a rural paddock".
Photograph captioned by Fairfax, "New Zealand's Governor-General Anand Satyanand and his wife Susan Satyanand visited sites around earthquake stricken Canterbury today. Satyanand at the epicentre near Darfield where the new fault line can be clearly seen across a rural paddock".
Photograph captioned by Fairfax, "New Zealand's Governor-General Anand Satyanand and his wife Susan Satyanand visited sites around earthquake stricken Canterbury today. Satyanand at the epicentre near Darfield where the new fault line can be clearly seen across a rural paddock".
Photograph captioned by Fairfax, "New Zealand's Governor-General Anand Satyanand and his wife Susan Satyanand visited sites around earthquake stricken Canterbury today. Satyanand at the epicentre near Darfield where the new fault line can be clearly seen across a rural paddock".
The 2010 Darfield earthquake is the largest earthquake on record to have occurred within 40 km of a major city and not cause any fatalities. In this paper the authors have reflected on their experiences in Christchurch following the earthquake with a view to what worked, what didn’t, and what lessons can be learned from this for the benefit of Australian earthquake preparedness. Owing to the fact that most of the observed building damage occurred in Unreinforced Masonry (URM) construction, this paper focuses in particular on the authors’ experience conducting rapid building damage assessment during the first 72 hours following the earthquake and more detailed examination of the performance of unreinforced masonry buildings with and without seismic retrofit interventions.
Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield. Damage can be seen to the spires on the church tower. The spire-tops were removed for safety and to be repaired".
Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield . (L to R): St. Mary's parishioner Craig Perkins and builder Kevin Deam secure the final damaged spire to be removed from the church tower".
Looking across the faultline where the Saturday 4 September 2010 magnitude 7.1 earthquake originated. Note how much the previously straight fence is now out of alignment.
Looking across the faultline where the Saturday 4 September 2010 magnitude 7.1 earthquake originated. Note how much the previously straight fence is now out of alignment.
This paper provides a photographic tour of the ground-surface rupture features of the Greendale Fault, formed during the 4th September 2010 Darfield Earthquake. The fault, previously unknown, produced at least 29.5 km of strike-slip surface deformation of right-lateral (dextral) sense. Deformation, spread over a zone between 30 and 300 m wide, consisted mostly of horizontal flexure with subsidiary discrete shears, the latter only prominent where overall displacement across the zone exceeded about 1.5 m. A remarkable feature of this event was its location in an intensively farmed landscape, where a multitude of straight markers, such as fences, roads and ditches, allowed precise measurements of offsets, and permitted well-defined limits to be placed on the length and widths of the surface rupture deformation.
The 2010-2011 Canterbury earthquake sequence was extremely damaging to structures in Christchurch and continues to have a large economic and social impact on the city and surrounding regions. In addition to strong ground shaking (Bradley and Cubrinovski 2011 SRL; Bradley 2012 SDEE), extensive liquefaction was observed, particularly in the 4 September 2010 Darfield earthquake and the 22 February 2011 Christchurch earthquake (Cubrinovski et al. 2010 BNZSEE; 2011 SRL). Large observed vertical ground motion amplitudes were recorded in the events in this sequence, with vertical peak ground accelerations of over 2.2g being observed at the Heathcote Valley Primary School during the Christchurch earthquake, and numerous other vertical motions exceeding 1.0g (Bradley and Cubrinovski 2011 SRL; Bradley 2012 SDEE; Fry et al 2011 SRL). Vertical peak ground accelerations of over 1.2g were observed in the Darfield earthquake.
Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield. The last damaged spire-top is removed from the church tower, secured to the crane by St. Mary's parishioner Craig Perkins (obscured) and builder Kevin Deam".
Photograph captioned by Fairfax, "Damage to St. Mary's Anglican Church Timaru resulting from 7.1 Magnitude Earthquake centred near Darfield . (L to R): Builder Kevin Deam and St. Mary's parishioner Craig Perkins are hoisted by crane to remove the last damaged spire from the church tower".