Search

found 111 results

Images, Alexander Turnbull Library

Two people crawl across a desert littered with animal bones and skulls towards the words 'Land reports' in the distance. The woman says 'Don't get your hopes up! It's probably a mirage!' Context - On Thursday 23 June Prime Minister John Key, Canterbury Earthquake Recovery Minister Gerry Brownlee and representatives from engineering consultants Tonkin & Taylor announced the first part of the Government's long-awaited land report that revealed the fate of up to 5000 quake-damaged homes. Quantity: 1 digital cartoon(s).

Images, Alexander Turnbull Library

Two skeletal people sit in armchairs waist-deep in silt. The man is reading the newspaper and says 'The wait's over! The Land Report's due out dear!... DEAR?' He realises that his wife, whose bony hand clutches 'EQC update No. 37', is dead. Context - On Thursday 23 June Prime Minister John Key, Canterbury Earthquake Recovery Minister Gerry Brownlee and representatives from engineering consultants Tonkin & Taylor announced the first part of the Government's long-awaited land report that revealed the fate of up to 5000 quake-damaged homes. Quantity: 1 digital cartoon(s).

Research papers, Lincoln University

The recent earthquakes in Canterbury have left thousands of Christchurch residents’ homeless or facing the possibility of homelessness. The New Zealand Government, so far, have announced that 5,100 homes in Christchurch will have to be abandoned as a result of earthquake damaged land (Christchurch City Council, 2011). They have been zoned red on the Canterbury Earthquake Recovery Authority (CERA) map and there are another 10,000 that have been zoned orange, awaiting a decision (Christchurch City Council, 2011). This situation has placed pressures on land developers and local authorities to speed up the process associated with the development of proposed subdivisions in Christchurch to accommodate residents in this situation (Tarrant, 2011).

Images, UC QuakeStudies

A digitally manipulated image of the Gap Filler Monopoly board square on Manchester Street. The photographer comments, "On the site of a demolished earthquake damaged building in Christchurch, New Zealand is a Monopoly game square for giants. The Gap Filler Project makes the bare land where once a building once stood into something both interesting and unique and this time they created a massive Monopoly board square. In the game of Monopoly you move your player with a dog, shoe or maybe the hat, but as the most common thing in the City are diggers they have the placed one on the square. There are also two houses on Manchester Street, which is priced at $240".

Images, Alexander Turnbull Library

A chimpanzee paints with a palette of colours. Context: After the earthquakes in Christchurch buildings and areas were designated green, blue, red or white depending on the degree of damage. Buildings in the 'red' zone were then examined to ascertain whether they should be demolished or restored and sometimes the land itself was deemed unsafe. There have been many controversial decisions made which is the point the cartoon makes. Quantity: 1 digital cartoon(s).

Audio, Radio New Zealand

Businesses in the Christchurch suburb of New Brighton say something needs to be done urgently to pull the area out of an economic slump. The seaside town has struggled since the Canterbury Earthquakes, with thousands of people - and customers - leaving the area due to land damage under their homes. And they're pointing the fingers at city leaders like the Christchurch City Council and its rebuild agency, Development Christchurch. Logan Church spoke to New Brighton business owner Nigel Gilmore.

Audio, Radio New Zealand

Gerry Brownlee is the Canterbury Earthquake Recovery Minister. Hugo Kristinsson is a South Brighton resident who stood for mayor last year on the issue of flood risk and land damage. David Stringer is the spokesperson for the community lobby group Insurance Watch - which has been seeking answers from the council since 2011 about the flood risk to the city. Nine to Noon speaks with all three about the recent flooding in Christchurch.

Images, eqnz.chch.2010

The area beside the lower Avon River in New Brighton of Evans Avenue and Admirals Way has been cleared of houses and boundary fences (there were between 15 and 20 houses on this block) , fully fenced with post and wire and "spray on" grass applied. These were all red zone properties acquired by the crown after the land was deemed too damaged t...

Images, eqnz.chch.2010

Wairoa Street Another web site used this image (with a link to this Flickr page), so the view count sky rocketed. CERA (Canterbury Earthquake Recovery Authority)/Tonkin & Taylor also used this image on page 13 of a Land Damage presentation on 23/06/11. This was also released as a PDF. A few months later a friend emailed me the report (for...

Images, eqnz.chch.2010

Another house has gone from Seabreeze Close, Pacific Park, Bexley, leaving just the concrete base, a few floor tiles and the smashed toilet (throne). Houses are being demolished (85%) or deconstructed/shifted (15%) as a result of land damage in the major earthquakes of 4th September 2010, 22nd February 2011, 13th June 2011 and 23rd December 2...

Research papers, University of Canterbury Library

The 2010 and 2011 earthquakes in the region of Canterbury, New Zealand caused widespread damage and the deaths of 185 people. Suburbs on the eastern side of Christchurch and in the satellite town of Kaiapoi, 20 kilometres north of Christchurch, were badly damaged by liquefaction. The Canterbury Earthquake Recovery Authority (CERA), a government organisation set up in the wake of the earthquakes, began to systematically zone all residential land in 2011. Based on the possibility for land remediation, 7860 houses in Christchurch and Kaiapoi were zoned red. Those who were in this zone were compensated and had to buy or build elsewhere. The other zone examined within this research – that of TC3 – lies within the green zone. Residents, in this zone, were able to stay in their houses but land was moderately damaged and required site-specific geotechnical investigations. This research sought to understand how residents’ senses of home were impacted by a disaster and the response efforts. Focusing on the TC3 and red zone of the eastern suburbs and the satellite town of Kaiapoi, this study interviewed 29 residents within these zones. The concept of home was explored with the respondents at three scales: home as a household; home as a community; and home as a city. There was a large amount of resistance to the zoning process and the handling of claims by insurance companies and the Earthquake Commission (EQC) after the earthquakes. Lack of transparency and communication, as well as extremely slow timelines were all documented as failings of these agencies. This research seeks to understand how participant’s sense of home changed on an individual level and how it was impacted by outside agencies. Homemaking techniques were also focused on showing that a changed sense of home will impact on how a person interacts with a space.

Research papers, University of Canterbury Library

Land cover change information in urban areas supports decision makers in dealing with public policy planning and resource management. Remote sensing has been demonstrated as an efficient and accurate way to monitor land cover change over large extents. The Canterbury Earthquake Sequence (CES) caused massive damage in Christchurch, New Zealand and resulted in significant land cover change over a short time period. This study combined two types of remote sensing data, aerial imagery (RGB) and LiDAR, as the basis for quantifying land cover change in Christchurch between 2011 – 2015, a period corresponding to the five years immediately following the 22 February 2011 earthquake, which was part of the CES. An object based image analysis (OBIA) approach was adopted to classify the aerial imagery and LiDAR data into seven land cover types (bare land, building, grass, shadow, tree and water). The OBIA approach consisted of two steps, image segmentation and object classification. For the first step, this study used multi-level segmentation to better segment objects. For the second step, the random forest (RF) classifier was used to assign a land cover type to each object defined by the segmentation. Overall classification accuracies for 2011 and 2015 were 94.0% and 94.32%, respectively. Based on the classification result, land cover changes between 2011 and 2015 were then analysed. Significant increases were found in road and tree cover, while the land cover types that decreased were bare land, grass, roof, water. To better understand the reasons for those changes, land cover transitions were calculated. Canopy growth, seasonal differences and forest plantation establishment were the main reasons for tree cover increase. Redevelopment after the earthquake was the main reason for road area growth. By comparing the spatial distribution of these transitions, this study also identified Halswell and Wigram as the fastest developing suburbs in Christchurch. These results provided quantitative information for the effects of CES, with respect to land cover change. They allow for a better understanding for the current land cover status of Christchurch. Among those land cover changes, the significant increase in tree cover aroused particularly interest as urban forests benefit citizens via ecosystem services, including health, social, economic, and environmental benefits. Therefore, this study firstly calculated the percentages of tree cover in Christchurch’s fifteen wards in order to provide a general idea of tree cover change in the city extent. Following this, an automatic individual tree detection and crown delineation (ITCD) was undertaken to determine the feasibility of automated tree counting. The accuracies of the proposed approach ranged between 56.47% and 92.11% in thirty different sample plots, with an overall accuracy of 75.60%. Such varied accuracies were later found to be caused by the fixed tree detection window size and misclassifications from the land cover classification that affected the boundary of the CHM. Due to the large variability in accuracy, tree counting was not undertaken city-wide for both time periods. However, directions for further study for ITCD in Christchurch could be exploring ITCD approaches with variable window size or optimizing the classification approach to focus more on producing highly accurate CHMs.

Images, eqnz.chch.2010

8 Velsheda Street, Bexley, Christchurch, across the road from my house was demolished a week or so ago, just one of many demolitions of Red Zone properties at the moment. This house was about ten years old and suffered land damage during the 4th September 2010 and 22nd February 2011 earthquakes. The same fate awaits my house later in the year o...

Images, Alexander Turnbull Library

The EQC (Earthquake Commission) has developed new standards and designs to help rebuild Christchurch after the earthquakes of 2010 and 2011. The Department of Building and Housing have produced some generic building foundation and floor designs that can be used for residential homes being built or repaired on liquefied, tilting, unsettled and/or damaged land. (RebuildChristchurch.co.nz) Quantity: 1 digital cartoon(s).

Images, eqnz.chch.2010

The NG building on Madras Street was given the go ahead to repair earthquake damage, which the owners did at some expense, Now, the government want this land to build a central city stadium, so there is a protest on the windows set to the Christmas song the Twelve Days of Christmas. 12 million road cones 11 thousand Hi-Viz (vests) 10 Council m...

Images, eqnz.chch.2010

The NG building on Madras Street was given the go ahead to repair earthquake damage, which the owners did at some expense, Now, the government want this land to build a central city stadium, so there is a protest on the windows set to the Christmas song the Twelve Days of Christmas. 12 million road cones 11 thousand Hi-Viz (vests) 10 Council m...

Images, Alexander Turnbull Library

Shows a shamrock superimposed on the city of Christchurch. It represents the green zone. Context: Probably refers to the zoning review process for those insured residential property owners who wish to query their land zoning. Zoning of flat land in greater Christchurch began in June last year and was completed last month. Over that period 7253 properties were zoned red as unsuitable for residential occupation due to significant earthquake damage; while a further 180,000 properties were zoned green as suitable for residential occupation, some with conditions. (rebuildchristchurch, 15 June 2012) Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

The aim of this thesis was to examine the spatial and the temporal patterns of anxiety and chest pain resulting from the Canterbury, New Zealand earthquaeks. Three research objectives were identified: examine any spatial or termporal clusters of anxiety and chest pain; examine the associations between anxiety, chest pain and damage to neighbourhood; and determine any statistically significant difference in counts of anxiety and chest pain after each earthquake or aftershock which resulted in severe damage. Measures of the extent of liquefaction the location of CERA red-zones were used as proxy measures for earthquake damage. Cases of those who presented to Christchurch Public Hospital Emergency Department with either anxiety or chest pain between May 2010 and April 2012 were aggregated to census area unit (CAU) level for analysis. This thesis has taken a unique approach to examining the spatial and spatio-temporal variations of anxiety and chest pain after an earthquake and offers unique results. This is the first study of its kind to use a GIS approach when examining Canterbury specific earthquake damage and health variables at a CAU level after the earthquakes. Through the use of spatio-termporal scan modelling, negative and linear regression modelling and temporal linear modelling with dummy variables this research was able to conclude there are significant spatial and temporal variations in anxiety and chest pain resulting from the earthquakes. The spatio-termporal scan modelling identified a hot cluster of both anxiety and chest pain within Christchurch at the same time the earthquakes occurred. The negative binomial model found liquefaction to be a stronger predictor of anxiety than the Canterbury Earthquake Recovery Authority's (CERA) land zones. The linear regression model foun chest pain to be positively associated with all measures of earthquake damage with the exception of being in the red-zone. The temporal modelling identified a significant increase in anxiety cases one month after a major earthquake, and chest pain cases spiked two weeks after an earthquake and gradually decreased over the following five weeks. This research was limited by lack of control period data, limited measures of earthquake damage, ethical restrictions, and the need for population tracking data. The findings of this research will be useful in the planning and allocation of mental wellbeing resources should another similar event like the Canterbury Earthquakes occur in New Zealand.

Research papers, University of Canterbury Library

The Canterbury earthquakes, which started with the 7.1 magnitude event on September 4, 2010, caused significant damage in the region. The September 4 earthquakes brought substantial damage to land, buildings, and infrastructure, while the 6.3 magnitude earthquake on February 22, 2011 (and its subsequent aftershocks), brought even greater property damage, but also significant loss of life in addition to the region. Thousands were injured, and 185 persons died. A national State of Emergency was declared and remained in effect until April 30, 2011. A significant number of people required immediate assistance and support to deal with loss, injury, trauma experiences, and property damages. Many had to find alternate accommodation as their houses were too damaged to stay in. Of those affected, many were already vulnerable, and others had been too traumatized by the events to effectively deal with the challenges they were faced with. A number of human service organizations in the region, from both government and non-government sectors, joined forces to be able to more effectively and efficiently help those in need. This was the start of what would become known as the Earthquake Support Coordination Service. The aim of this report is to present an evaluation of the Earthquake Support Coordination Service and its collaborative organization, based on documentation and interviews with key stakeholders of the service. The aim is also to evaluate the service based on perspectives gathered among the clients as well as the coordinators working in the service. The final aim is to offer a reflection on the service model, and on what factors enabled the service, as well as recommendations regarding aspects of the service which may require review, and aspects which may be useful in other contexts.

Images, UC QuakeStudies

Large cracks run through the brick cladding of this house in Wainoni. The photographer comments, "During the numerous earthquakes in Christchurch the land which ran alongside the Avon river on Avonside Drive slumped towards the waterway. Houses which were wooden framed and had an external brick veneer started to sink into the liquefied soil. This caused the brick walls to crack, but the houses' occupants though shook up were saved by the wooden framework from the houses collapsing on them".

Audio, Radio New Zealand

Christchurch red zone residents say the area is experiencing an increasing amount of petty crime and dumped rubbish, due to a lack of people. The red zone was established after thousands of houses - and the land underneath them - suffered severe damage in the 2010 and 2011 earthquakes. Last year (2019), a Regeneration Plan for the area was signed off by the government - which included building walkways, cycleways, forests, wetlands, and sport and recreation areas. That's all designed to get people back into the red zone area - but much of the work is still years away. Logan Church met a resident who told him that in the meantime, things are deteriorating.

Research papers, University of Canterbury Library

On February 22, 2011, a magnitude Mw 6.2 earthquake affected the Canterbury region, New Zealand, resulting in many fatalities. Liquefaction occurred across many areas, visible on the surface as ‘‘sand volcanoes’’, blisters and subsidence, causing significant damage to buildings, land and infrastructure. Liquefaction occurred at a number of sites across the Christchurch Boys High School sports grounds; one area in particular contained a piston ground failure and an adjacent silt volcano. Here, as part of a class project, we apply near-surface geophysics to image these two liquefaction features and determine whether they share a subsurface connection. Hand auger results enable correlation of the geophysical responses with the subsurface stratigraphy. The survey results suggest that there is a subsurface link, likely via a paleo-stream channel. The anomalous responses of the horizontal loop electromagnetic survey and electrical resistivity imaging highlight the disruption of the subsurface electrical properties beneath and between the two liquefaction features. The vertical magnetic gradient may also show a subtle anomalous response in this area, however the results are inconclusive. The ground penetrating radar survey shows disruption of the subsurface stratigraphy beneath the liquefaction features, in particular sediment mounding beneath the silt ejection (‘‘silt volcano’’) and stratigraphic disruption beneath the piston failure. The results indicate how near-surface geophysics allow the characteristics of liquefaction in the subsurface to be better understood, which could aid remediation work following liquefaction-induced land damage and guide interpretation of geophysical surveys of paleoliquefaction features.

Images, Alexander Turnbull Library

Shows a helicopter spray painting Christchurch with the Canterbury colours of black and red. Someone in the helicopter yells that 'it's gotta be better than tint of TC3'. Context: Probably refers to the apology by Earthquake Recovery Minister Gerry Brownlee for offending Christchurch's TC3 residents after saying he was 'sick and tired' of their moaning. TC3 means 'technical category 3'. Land classified TC3 is the mostly badly quake-damaged considered economically repairable. Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

In the period between September 2010 and December 2011, Christchurch (New Zealand) and its surroundings were hit by a series of strong earthquakes including six significant events, all generated by local faults in proximity to the city: 4 September 2010 (Mw=7.1), 22 February 2011 (Mw=6.2), 13 June 2011 (Mw=5.3 and Mw=6.0) and 23 December 2011 (M=5.8 and (M=5.9) earthquakes. As shown in Figure 1, the causative faults of the earthquakes were very close to or within the city boundaries thus generating very strong ground motions and causing tremendous damage throughout the city. Christchurch is shown as a lighter colour area, and its Central Business District (CBD) is marked with a white square area in the figure. Note that the sequence of earthquakes started to the west of the city and then propagated to the south, south-east and east of the city through a set of separate but apparently interacting faults. Because of their strength and proximity to the city, the earthquakes caused tremendous physical damage and impacts on the people, natural and built environments of Christchurch. The 22 February 2011 earthquake was particularly devastating. The ground motions generated by this earthquake were intense and in many parts of Christchurch substantially above the ground motions used to design the buildings in Christchurch. The earthquake caused 182 fatalities, collapse of two multi-storey reinforced concrete buildings, collapse or partial collapse of many unreinforced masonry structures including the historic Christchurch Cathedral. The Central Business District (CBD) of Christchurch, which is the central heart of the city just east of Hagley Park, was practically lost with majority of its 3,000 buildings being damaged beyond repair. Widespread liquefaction in the suburbs of Christchurch, as well as rock falls and slope/cliff instabilities in the Port Hills affected tens of thousands of residential buildings and properties, and shattered the lifelines and infrastructure over approximately one third of the city area. The total economic loss caused by the 2010-2011 Christchurch earthquakes is currently estimated to be in the range between 25 and 30 billion NZ dollars (or 15% to 18% of New Zealand’s GDP). After each major earthquake, comprehensive field investigations and inspections were conducted to document the liquefaction-induced land damage, lateral spreading displacements and their impacts on buildings and infrastructure. In addition, the ground motions produced by the earthquakes were recorded by approximately 15 strong motion stations within (close to) the city boundaries providing and impressive wealth of data, records and observations of the performance of ground and various types of structures during this unusual sequence of strong local earthquakes affecting a city. This paper discusses the liquefaction in residential areas and focuses on its impacts on dwellings (residential houses) and potable water system in the Christchurch suburbs. The ground conditions of Christchurch including the depositional history of soils, their composition, age and groundwater regime are first discussed. Detailed liquefaction maps illustrating the extent and severity of liquefaction across Christchurch triggered by the sequence of earthquakes including multiple episodes of severe re-liquefaction are next presented. Characteristic liquefaction-induced damage to residential houses is then described focussing on the performance of typical house foundations in areas affected by liquefaction. Liquefaction impacts on the potable water system of Christchurch is also briefly summarized including correlation between the damage to the system, liquefaction severity, and the performance of different pipe materials. Finally, the characteristics of Christchurch liquefaction and its impacts on built environment are discussed in relation to the liquefaction-induced damage in Japan during the 11 March 2011 Great East Japan Earthquake.

Research papers, Lincoln University

Millions of urban residents around the world in the coming century will experience severe landscape change – including increased frequencies of flooding due to intensifying storm events and impacts from sea level rise. For cities, collisions of environmental change with mismatched cultural systems present a major threat to infrastructure systems that support urban living. Landscape architects who address these issues express a need to realign infrastructure with underlying natural systems, criticizing the lack of social and environmental considerations in engineering works. Our ability to manage both society and the landscapes we live in to better adapt to unpredictable events and landscape changes is essential if we are to sustain the health and safety of our families, neighbourhoods, and wider community networks. When extreme events like earthquakes or flooding occur in developed areas, the feasibility of returning the land to pre-disturbance use can be questioned. In Christchurch for example, a large expanse of land (630 hectares) within the city was severely damaged by the earthquakes and judged too impractical to repair in the short term. The central government now owns the land and is currently in the process of demolishing the mostly residential houses that formed the predominant land use. Furthermore, cascading impacts from the earthquakes have resulted in a general land subsidence of .5m over much of eastern Christchurch, causing disruptive and damaging flooding. Yet, although disasters can cause severe social and environmental distress, they also hold great potential as a catalyst to increasing adaption. But how might landscape architecture be better positioned to respond to the potential for transformation after disaster? This research asks two core questions: what roles can the discipline of landscape architecture play in improving the resilience of communities so they become more able to adapt to change? And what imaginative concepts could be designed for alternative forms of residential development that better empower residents to understand and adapt the infrastructure that supports them? Through design-directed inquiry, the research found landscape architecture theory to be well positioned to contribute to goals of social-ecological systems resilience. The discipline of landscape architecture could become influential in resilience-oriented multi disciplinary collaborations, with our particular strengths lying in six key areas: the integration of ecological and social processes, improving social capital, engaging with temporality, design-led innovation potential, increasing diversity and our ability to work across multiple scales. Furthermore, several innovative ideas were developed, through a site-based design exploration located within the residential red zone, that attempt to challenge conventional modes of urban living – concepts such as time-based land use, understanding roads as urban waterways, and landscape design and management strategies that increase community participation and awareness of the temporality in landscapes.

Research papers, Lincoln University

As a result of the Christchurch Earthquake that occurred on 22nd February 2011 and the resultant loss of life and widespread damage, a Royal Commission of Enquiry was convened in April 2011. The Royal Commission recommended a number of significant changes to the regulation of earthquake prone building in New Zealand. Earthquake prone buildings are buildings that are deemed to be of insufficient strength to perform adequately in a moderate earthquake. In response to the Royal Commission recommendations the New Zealand Government carried out a consultative process before announcing proposed changes to the building regulations in August 2013. One of the most significant changes is the imposition of mandatory strengthening requirements for earthquake prone buildings on a national basis. This will have a significant impact on the urban fabric of most New Zealand towns and cities. The type of traditional cost benefit study carried out to date fails to measure these impacts and this paper proposes an alternative methodology based on the analysis of land use data and rating valuations. This methodology was developed and applied to a small provincial town in the form of a case study. The results of this case study and the methodology used are discussed in this paper.

Images, Alexander Turnbull Library

Someone in a car full of passengers who represent '10,000 residents' says 'For Pete's sake... Are they ever going to change?' Spider webs have been spun between the car and the road as the car waits at a traffic light that represents the 'land report' and is stuck on orange. Context - Context - On Thursday 23 June Prime Minister John Key, Canterbury Earthquake Recovery Minister Gerry Brownlee and representatives from engineering consultants Tonkin & Taylor announced the first part of the Government's long-awaited land report that revealed the fate of up to 5000 quake-damaged homes. These homes were in the 'red zone'. But 10,500 owners in the orange zone were left in limbo, with their properties requiring further assessment. The areas included Kaiapoi, Pines Beach, Brooklands, Spencerville, Parklands and Queenspark (www.rebuildchristchurch.co.nz 6 July 2011)) Quantity: 1 digital cartoon(s).

Research papers, University of Canterbury Library

Peri-urban environments are critical to the connections between urban and rural ecosystems and their respective communities. Lowland floodplains are important examples that are attractive for urbanisation and often associated with the loss of rural lands and resources. In Christchurch, New Zealand, damage from major earthquakes led to the large-scale abandonment of urban residential properties in former floodplain areas creating a rare opportunity to re-imagine the future of these lands. This has posed a unique governance challenge involving the reassessment of land-use options and a renewed focus on disaster risk and climate change adaptation. Urban-rural tensions have emerged through decisions on relocating residential development, alternative proposals for land uses, and an unprecedented opportunity for redress of degraded traditional values for indigenous (Māori) people. Immediately following the earthquakes, existing statutory arrangements applied to many recovery needs and identified institutional responsibilities. Bespoke legislation was also created to address the scale of impacts. Characteristics of the approach have included attention to information acquisition, iterative assessment of land - use options, and a wide variety of opportunities for community participation. Challenges have included a protracted decision-making process with accompanying transaction costs, and a high requirement for coordination. The case typifies the challenges of achieving ecosystem governance where both urban and rural stakeholders have strong desires and an opportunity to exert influence. It presents a unique context for applying the latest thinking on ecosystem management, adaptation, and resilience, and offers transferable learning for the governance of peri-urban floodplains worldwide.

Research papers, Victoria University of Wellington

There are many swaths of land that are deemed unsuitable to build on and occupy. These places, however, are rarely within an established city. The Canterbury earthquakes of 2010 and 2011 left areas in central Christchurch with such significant land damage that it is unlikely to be re-inhabited for a considerable period of time. These areas are commonly known as the ‘Red Zone’.This thesis explores redevelop in on volatile land through innovative solutions found and adapted from the traditional Indonesian construction techniques. Currently, Indonesia’s vernacular architecture sits on the verge of extinction after a cultural shift towards the masonry bungalow forced a rapid decline in their occupation and construction. The 2004 Indian Ocean earthquake and tsunami illustrated the bungalows’ poor performance in the face of catastrophic seismic activity, being outperformed by the traditional structures. This has been particularly evident in the Rumah Aceh construction of the Aceh province in Northern Sumatra. Within a New Zealand context an adaptation and modernisation of the Rumah Aceh construction will generate an architectural response not currently accepted under the scope of NZS 3604:2011; the standards most recent revision following the Canterbury earthquake of 2010 concerning timber-based seismic performance. This architectural exploration will further address light timber structures, their components, sustainability and seismic resilience. Improving new builds’ durability as New Zealand moves away from the previously promoted bungalow model that extends beyond residential and into all aspects of New Zealand built environment.

Images, UC QuakeStudies

Balloons and a sign advertising a garage sale hang from a fence. The photographer comments, "Today, 23/7/2011 the Bexley community in Christchurch got together and held a Bexley wide garage sale. You could pick up a map of the garage sales in Arncliffe St, which meant that people could find all the garage sales even if they were on the back sections. People got together with close neighbours to hold joint Garage Sales. In the area where the garage sales were held all the homes have been 'written off' by the government, as the land on which they sit is too damaged by the Christchurch earthquakes to repair. In places it looked more like a ships graveyard with the hulls of the houses sinking lopsidedly into the sand. Unfortunately for nearly everyone in the red zone they cannot rebuild a new home as sections to build on start now around $2,000 and the government is not paying them enough to buy a plot of land and build a new home. The choices for Bexley residents in most cases is to rent, buy a house at least a few years old or move to Australia to start again. I was told that up to 80% could be off to Oz".