Photograph captioned by Fairfax, "The Provincial Hotel Building getting loose material removed after becoming unstable due to the September earthquake".
A photograph captioned by BeckerFraserPhotos, "A crane lifting roof material off a demolition building at 705 Colombo Street".
Photograph captioned by Fairfax, "The Provincial Hotel Building getting loose material removed after becoming unstable due to the September earthquake".
Photograph captioned by Fairfax, "Post-earthquake demolition. Materials from a building on St Asaph Street still waiting to be cleared".
Over 6.3 million waste tyres are produced annually in New Zealand (Tyrewise, 2021), leading to socioeconomic and environmental concerns. The 2010-11 Canterbury Earthquake Sequence inflicted extensive damage to ~6,000 residential buildings, highlighting the need to improve the seismic resilience of the residential housing sector. A cost-effective and sustainable eco-rubber geotechnical seismic isolation (ERGSI) foundation system for new low-rise buildings was developed by the authors. The ERGSI system integrates a horizontal geotechnical seismic isolation (GSI) layer i.e., a deformable seismic energy dissipative filter made of granulated tyre rubber (GTR) and gravel (G) – and a flexible rubberised concrete raft footing. Geotechnical experimental and numerical investigations demonstrated the effectiveness of the ERGSI system in reducing the seismic demand at the foundation level (i.e., reduced peak ground acceleration) (Hernandez et al., 2019; Tasalloti et al., 2021). However, it is essential to ensure that the ERGSI system has minimal leaching attributes and does not result in long-term negative impacts on the environment.
A photograph captioned by Paul Corliss, "Catholic Cathedral".
Photograph captioned by BeckerFraserPhotos, "Material stripped out of the building at the Haldenstein's/Unlimited Paenga School site, High Street".
A multi-disciplinary geo-structural-environmental engineering project funded by the Ministry of Business Innovation and Employment (MBIE) is being carried out at the University of Canterbury. The project aims at developing an eco-friendly seismic isolation foundation system which will improve the seismic performance of medium-density low-rise buildings. Such system is characterized by two main elements: 1) granulated scrap rubber mixed with gravelly soils to be placed beneath the structure, with the goal damping part of the seismic energy before it reaches the superstructure; and 2) a basement raft made of steel-fibre reinforced rubberised concrete (SFRRuC) to enhance the flexibility and toughness of the foundation, looking at better accommodating the displacement demand. In this paper, the main objectives, scope and methodology of the project will be briefly described. A literature review of the engineering properties of steel-fibre reinforced rubberised concrete (RuC) will be presented. Then, preliminary results on concrete mixes with different rubber and steel fibres content will be exhibited.
There is an increasing recognition that the seismic performance of buildings will be affected by the behaviour of both structural and non-structural elements. In light of this, work has been progressing at the University of Canterbury to develop guidelines for the seismic assessment of commercial glazing systems. This paper reviews the seismic assessment guidelines prescribed in Section C10 of the MBIE building assessment guidelines. Subsequently, the C10 approach is used to assess the drift capacity of a number of glazing units recently tested at the University of Canterbury. Comparing the predicted and observed drift capacities, it would appear that the C10 guidelines may lead to nonconservative estimates of drift capacity. Furthermore, the experimental results indicate that watertightness may be lost at very low drift demands, suggesting that guidance for the assessment of serviceability performance would also be beneficial. As such, it is proposed that improved guidance be provided to assist engineers in considering the possible impact that glazing could have on the structural response of a building in a large earthquake.
A crane lifting material off the roof the damaged Cathedral of the Blessed Sacrament on Barbadoes Street.
Benches made out of recycled material from demolished buildings. These benches will serve as seats for Gap Filler's temporary cinema, 'The Night Club'.
Low Damage Seismic Design (LDSD) guidance material being developed by Engineering NZ is considering a design drift limit for multi-storey buildings of 0.5% at a new damage control limit state (DCLS). The impact of this new design requirement on the expected annual loss due to repair costs is investigated for a four-storey office building with reinforced concrete walls located in Christchurch. The LDSD guidance material aims to reduce the expected annual loss of complying buildings to below 0.1% of building replacement cost. The research tested this expectation. Losses were estimated in accordance with FEMA P58, using building responses from non-linear time history analyses (performed with OpenSees using lumped plasticity models). The equivalent static method, in line with NZS 1170.5 and NZS 3101, was used to design the building to LDSD specifications, representing a future state-of-practice design. The building designed to low-damage specification returned an expected annual loss of 0.10%, and the building designed conventionally returned an expected annual loss of 0.13%. Limitations with the NZS 3101 method for determining wall stiffness were identified, and a different method acknowledging the relationship between strength and stiffness was used to redesign the building. Along with improving this design assumption, the study finds that LDSD design criteria could be an effective way of limiting damage and losses.
A photograph captioned by BeckerFraserPhotos, "Materials salvaged from Our City, O-Tautahi on pallets out front".
A volunteer constructs benches out of recycled material from demolished building. These benches will serve as seats for Gap Filler's temporary cinema, 'The Night Club'.
An artwork in the walls of the Gap Filler Headquarters office building in Sydenham. The wall is made out of perspex which reveals recycled materials underneath.
An artwork in the walls of the Gap Filler Headquarters office building in Sydenham. The wall is made out of perspex which reveals recycled materials underneath.
Damage to the side of the Cathedral of the Blessed Sacrament on Barbadoes Street. Above, a crane is lifting material off the roof.
A photograph of salvaged stained-glass windows from the demolished Warners Hotel.
Relates to the three new categories for residential foundation design that have been developed and will be required for repairing and rebuilding homes in Canterbury following the earthquakes of 2010 and 2011. The 'zones' referred to in the cartoon are the colours designated to different degrees of damage to particular areas or buildings in Christchurch after the earthquakes. Quantity: 1 digital cartoon(s).
A photograph of a mural on a wall in the former site of a building on Norwich Quay in Lyttelton. Construction material has been laid up against the mural.
Photograph captioned by BeckerFraserPhotos, "Looking along Gloucester Street towards the Marque Hotel with the Novotel on the right. Demolition material is the Coachman".
Photograph captioned by BeckerFraserPhotos, "Container shops being constructed in Cashel Mall on the Whitcoulls site".
The increasing prevalence of mixed-material buildings that combine concrete walls and steel frames in New Zealand, coupled with a lack of specific design and detailing guidelines for concrete wall-steel beam connections, underscores the need for comprehensive research to ensure that these structures behave as intended during earthquakes. Bolted web plate connections, commonly found in steel framing systems, are typically used to connect steel beams to concrete walls. These connections are idealised as pinned during design. However, research on steel framing systems has shown that these connections can develop significant stiffness and moment resistance when subjected to large rotations during seismic loading, potentially leading to brittle failure when used in concrete wall to steel beam applications. This thesis was written to understand the seismic performance of concrete wall-steel beam bolted web plate connections, providing experimental evidence, numerical modelling insights, and design recommendations to address critical gaps in current design practices. The study is divided into three phases. First, a review of 50 concrete wall-steel frame buildings in Auckland and Christchurch was conducted to understand current design practices and typical connection details. The findings revealed significant variation in design and detailing practices and a lack of specific guidelines for concrete wall-steel beam connections. Second, an experimental programme was conducted on four full-scale concrete wall-steel beam sub-assemblages, each incorporating variations in connection detailing. The tests were designed to quantify the rotation capacity of concrete wall-steel beam connections, identify failure modes and investigate the effectiveness of potential connection improvements. Results demonstrated that concrete wall-steel beam bolted web plate connections designed using current design standards and following existing practices are vulnerable to non-ductile failure characterised by concrete breakout. However, using slotted holes in the web plate and bent reinforcing bar anchors instead of headed stud anchors improved connection rotation capacity. Third, a numerical model of a case study building was developed on OpenSeesPy, with different connection conditions assumed based on the experimental results. Pushover and time history analyses were conducted to evaluate the implications of different connection conditions (pinned vs non-pinned) on global building response and local member demands. The findings revealed that using non-pinned connection conditions does not significantly affect the global building response and shear and bending moment demands on lateral load-resisting elements. However, doing so generates overstrength moments on the connections that induce different actions on out-of-plane concrete walls connected to steel beams. Synthesising findings from all three phases, this thesis concludes with a proposed design procedure for concrete wall-steel beam connections based on a capacity design approach to ensure ductile failure modes and suppress brittle ones. Key recommendations include selecting appropriate bolt hole geometry and anchorage, providing sufficient rotation capacity, and accounting for connection overstrength in global analyses.
Unreinforced masonry (URM) buildings have repeatedly been shown to perform poorly in large magnitude earthquakes, with both New Zealand and Australia having a history of past earthquakes that have resulted in fatalities due to collapsed URM buildings. A comparison is presented here of the URM building stock and the seismic vulnerability of Christchurch and Adelaide in order to demonstrate the relevance to Australian cities of observations in Christchurch resulting from the 2010/2011 Canterbury earthquake swarm. It is shown that the materials, architecture and hence earthquake strength of URM buildings in both countries is comparable and that Adelaide and other cities of Australia have seismic vulnerability sufficient to cause major damage to their URM buildings should a design level earthquake occur. Such an earthquake is expected to cause major building damage, and fatalities should be expected.
A photograph of a room in the Diabetes Centre with building materials in the corner. Plastic sheeting has been placed over the carpet and has been used to create a temporary wall on the right.
The perspex wall of the 10 square metre office building viewed from the inside. Volunteers have begun to fill the wall with recycled materials which will be sealed inside with another sheet of perspex.
A photograph of the street art in front of St Barnabas Church on Fendalton Road. The message, "Outrageous", has been constructed from fabric and other materials on the wire fences in front of the building.
A photograph of a mural on a wall in the former site of a building on Norwich Quay in Lyttelton. Sections of reinforcing steel and other construction material have been laid up against the mural.
A photograph of the street art in front of St Barnabas Church on Fendalton Road. The message, "Outrageous", has been constructed from fabric and other materials on the wire fences in front of the building.
A photograph of the street art in front of St Barnabas Church on Fendalton Road. The message, "Outrageous", has been constructed from fabric and other materials on the wire fences in front of the building.