A large crack running through a propery in Avonside after the September 4th quake, creating a gap in the drive way and front of the house, as well as buckling on the gate.
Scaffolding on the side of the Windsor Hotel which has been bent by the collapse of the building's brick wall. The hotel's fire escape has buckled and become detached from the wall.
A photograph of the earthquake damage to Wharetiki on Colombo Street. One of the walls has buckled and pulled away from the house. In the distance another house has a noticeable lean.
Damage to the Gayhurst Road bridge. The road has buckled due to the bridge's movement, and the bridge is cordoned off. Liquefaction covers part of the street, and in the background St Paul's Church is also cordoned off.
A photograph captioned by BeckerFraserPhotos, "This stretch of New Brighton Road just by the entrance to the Horseshoe Lake walk shows the water puddles and how much the road has buckled".
A group of residents stand on River Road in Richmond. The road is badly cracked and buckled, and bas been partly blocked off with road cones and warning tape. The photographer comments, "Neighbours discussing the situation".
Damage to the Gayhurst Road bridge. The road has buckled due to the bridge's movement, and the bridge is cordoned off. Liquefaction covers part of the street, and in the background St Paul's Church is also cordoned off.
Damage to a house in Richmond. Brick cladding is badly cracked and buckled, and some bricks have fallen. There is a large gap between the floor and the foundations. The photographer comments, "Brick walls still clinging on".
Damage to a house in Richmond. Brick cladding is badly cracked and buckled, and some bricks have fallen. There is a large gap between the floor and the foundations. The photographer comments, "Brick walls still clinging on".
Buckled curbing along Jones Street in Kaiapoi. A pile of liquefaction can be seen in the foreground as well as a few plastic pipes. A number of portaloos line the street in the distance as well as road cones.
Damage to Medway Street in Richmond. The road surface is cracked and buckled, and covered in liquefaction silt. A temporary road sign restricting speed to 30 is visible, with road cones behind. The photographer comments, "Medway St, Woodchester Ave on right just beyond the 30 sign".
Damage to a house in Richmond. Brick cladding is badly cracked and buckled, and some bricks have fallen. There is a large gap between the floor and the foundations. The photographer comments, "A bike ride around the CBD. Our house - foundations and floor parted".
A man signals directions to a car attempting to make a u-turn on the badly damaged River Road. The road surface is cracked and buckled. The photographer comments, "More stranded cars, and rubbernecking sightseers turning around to go back the way they came".
A photograph of emergency management personnel taking photographs of a dip in the floor of Grenadier House on Madras Street. The front windows have smashed, the glass scattering over the foyer and footpath outside. The wall next to the elevator is buckled.
Damage to Medway Street in Richmond. The road surface is cracked and buckled, and covered in liquefaction silt. A temporary road sign restricting speed to 30 is visible, with road cones behind. The photographer comments, "Medway St, between Woodchester Ave and River Rd. Woodchester Ave on right just beyond the 30 sign".
Buckled columns on a house in Wainoni. The photographer comments, "A Sunday afternoon ride to New Brighton, then back via Aranui, Wainoni, Dallington, and Richmond. Not a cheerful experience. 'We've decided you're a repair, not a rebuild after all'. Actually, I think these houses might be red zoned".
A large crack in the road surface at the intersection of Medway Street and River Road, where River Road has slumped towards the river. The photographer comments, "Medway Street is a buckled mess of broken seal and liquefaction. 79 Medway St is on the right - taken at the corner of Medway St and River Rd".
Damage to River Road in Richmond. The road is badly cracked and buckled, and is partly blocked off with road cones and warning tape. In the background is a truck carrying more road cones and signs. The photographer comments, "Major slumps and cracks along River Rd. Near 381 River Rd, looking towards the Banks Ave - Dallington Terrace corner".
Damage to a residential property in Richmond. The brick wall of the garage has collapse inward, and the roof fallen in on top of it. The driveway is badly cracked and buckled. The photographer comments, "These photos show our old house in River Rd. The brick garage just collapsed, pulling the gate over as it fell".
A damaged driveway bridge over Dudley Creek has been blocked off with warning tape. The sides of the bridge have slumped, and the driveway surface has buckled and cracked. In the background, the gates to the property are misaligned. The photographer comments, "The bridge to a large mansion on a huge section was displaced by half a metre".
A damaged driveway bridge over Dudley Creek has been blocked off with warning tape. The sides of the bridge have slumped, and the driveway surface has buckled and cracked. In the background, the gates to the property are misaligned. The photographer comments, "The bridge into the mansion in Banks Avenue is as broken as the mansion itself".
A damaged driveway bridge over Dudley Creek has been blocked off with warning tape. The sides of the bridge have slumped, and the driveway surface has buckled and cracked. In the background, the gates to the property are misaligned. The photographer comments, "The bridge to a large mansion on a huge section was displaced by half a metre".
A sign on the door of a shop reading, "I have been reclosed again by the Council due to buckled retaining wall in basement. My landlord is getting wall braced for all our safety. I hope to reopen in 2/3 weeks. I will try and keep you informed by note on shop glass. Ross".
A photograph of an earthquake-damaged house on Marine Parade in North Brighton. The front section of the house has collapsed, the rest buckled. The wall of the gable has also collapsed as well as part of the lower front wall. A red sticker in the window indicates that the building is unsafe to enter. A message has been spray painted on the front window, reading, "Roof tiles, $3 each". Police tape, a road cone and saw horses have been used to cordon off the house.
A view down Manchester Street, looking south. The road is noticably buckled, and rubble from damaged buildings can be seen beyond the cordon fence. The photographer comments, "Today I ... went for a walk along the cordon to the north of Christchurch CBD which runs about one street back from Bealey Avenue. The soldiers manning the cordon seemed happy for me to take photos but I couldn't see much of the city from the barrier ... what you can see shows there's obviously a lot of damage. The roads are swollen and raised in many place. The once flat CBD will now feature plenty of hills as well as natural traffic calming features".
A photograph of an earthquake-damaged house on Marine Parade in North Brighton. The front section of the house has collapsed, the rest buckled. The wall of the gable has also collapsed as well as part of the lower front wall. A red sticker in the window indicates that the building is unsafe to enter. A message has been spray painted on the front window, reading, "Roof tiles, $3 each". Police tape has been used to cordon off the house. Public notices can be seen on the fence, on the roof of the collapsed section and the section behind.
A tribute taped to a window of a house on Tasman Place. The tribute reads, "Our red zoned house. When we bought you years ago, you looked a bit tired and sad, but overall you weren't too bad. We spruced you up with paint and love and asked for a blessing from above. The years went by, family and friends celebrations under your roof, your 'veggie' garden gave us kai. We felt safe within your wall, then one dreadful September night, the shaking earth made you fall. You tried with all your groaning might to keep us from harm. Because you were strongly built we held onto the door, while a wave of terror buckled the floor and outside the garden flooded with silt. Now you are near the end, sunken walls and windows bend. We say goodbye today and let you go, Our spirit and heart feels low. You are more than just mortar and brick. For us you were a gift, a safe haven where we once lived".
The 2011, 6.3 magnitude Christchurch earthquake in New Zealand caused considerable structural damage. It is believed that this event has now resulted in demolition of about 65-70% of the building stock in the Central Business District (CBD), significantly crippling economic activities in the city of Christchurch. A major concern raised from this event was adequacy of the current seismic design practice adopted for reinforced concrete walls due to their poor performance in modern buildings. The relatively short-duration earthquake motion implied that the observed wall damage occurred in a brittle manner despite adopting a ductile design philosophy. This paper presents the lessons learned from the observed wall damage in the context of current state of knowledge in the following areas: concentrating longitudinal reinforcement in wall end regions; determining wall thickness to prevent out-of-plane wall buckling; avoiding lap splices in plastic hinge zones; and quantifying minimum vertical reinforcement. http://www.2eceesistanbul.org/
High demolition rates were observed in New Zealand after the 2010-2011 Canterbury Earthquake Sequence despite the success of modern seismic design standards to achieve required performance objectives such as life safety and collapse prevention. Approximately 60% of the multi-storey reinforced concrete (RC) buildings in the Christchurch Central Business District were demolished after these earthquakes, even when only minor structural damage was present. Several factors influenced the decision of demolition instead of repair, one of them being the uncertainty of the seismic capacity of a damaged structure. To provide more insight into this topic, the investigation conducted in this thesis evaluated the residual capacity of moderately damaged RC walls and the effectiveness of repair techniques to restore the seismic performance of heavily damaged RC walls. The research outcome provided insights for developing guidelines for post-earthquake assessment of earthquake-damaged RC structures. The methodology used to conduct the investigation was through an experimental program divided into two phases. During the first phase, two walls were subjected to different types of pre-cyclic loading to represent the damaged condition from a prior earthquake, and a third wall represented a repair scenario with the damaged wall being repaired using epoxy injection and repair mortar after the pre-cyclic loading. Comparisons of these test walls to a control undamaged wall identified significant reductions in the stiffness of the damaged walls and a partial recovery in the wall stiffness achieved following epoxy injection. Visual damage that included distributed horizontal and diagonal cracks and spalling of the cover concrete did not affect the residual strength or displacement capacity of the walls. However, evidence of buckling of the longitudinal reinforcement during the pre-cyclic loading resulted in a slight reduction in strength recovery and a significant reduction in the displacement capacity of the damaged walls. Additional experimental programs from the literature were used to provide recommendations for modelling the response of moderately damaged RC walls and to identify a threshold that represented a potential reduction in the residual strength and displacement capacity of damaged RC walls in future earthquakes. The second phase of the experimental program conducted in this thesis addressed the replacement of concrete and reinforcing steel as repair techniques for heavily damaged RC walls. Two walls were repaired by replacing the damaged concrete and using welded connections to connect new reinforcing bars with existing bars. Different locations of the welded connections were investigated in the repaired walls to study the impact of these discontinuities at the critical section. No significant changes were observed in the stiffness, strength, and displacement capacity of the repaired walls compared to the benchmark undamaged wall. Differences in the local behaviour at the critical section were observed in one of the walls but did not impact the global response. The results of these two repaired walls were combined with other experimental programs found in the literature to assemble a database of repaired RC walls. Qualitative and quantitative analyses identified trends across various parameters, including wall types, damage before repair, and repair techniques implemented. The primary outcome of the database analysis was recommendations for concrete and reinforcing steel replacement to restore the strength and displacement capacity of heavily damaged RC walls.