One landscape colour digital photograph taken on 30 June 2011 showing earthquake damage to a section of retaining wall in Sumner Road. Plastic sheeting installed to stabilise previous damage and protect from water erosion is visible to the right of the photograph. Also visible in the photograph is a boarded up broken window and temporary safety ...
An image from an Air Force News April 2011 article titled, "Helping Hand for Lyttelton Museum". The image depicts the damaged Lyttelton Museum with a broken top wall and wire fencing around the building.
Forbes' Store on Norwich Quay with a broken awning and damage visible on the brick walls. Scaffolding placed around the building since the 4 September 2010 earthquake has tumbled during the 22 February 2011 earthquake.
Forbes' Store on Norwich Quay with a broken awning and damage visible on the brick walls. Scaffolding placed around the building since the 4 September 2010 earthquake has tumbled during the 22 February 2011 earthquake.
A photograph of the north-west corner of the ChristChurch Cathedral in Cathedral Square. The tower to the right has been partially demolished with only the lower section remaining. The door to the tower can be seen through the broken walls.
Blackwell's Department Store on the corner of Raven and Williams Streets in Kaiapoi. The top story of the building has collapsed into the bottom, as well as the awning into the street. A broken brick wall is visible above.
Broken stained glass in a window of the ChristChurch Cathedral. The photographer comments, "I only managed to get one picture of the badly earthquake damaged Christchurch Cathedral and I did not want to get the buttresses holding it up like some Medieval siege engine, so I thought this one was perfect. Looking through the window notice that the adjacent wall has gone and the blue windows belong to an office block across the road".
A photograph of members of the Wellington Emergency Management Office examining earthquake damage on the outside of the Copthorne Hotel. A section of the outer wall has broken away, and pieces are scattered onto the footpath below.
A photograph of the earthquake damage to a section of Robin Duff's house at 386 Oxford Terrace. The chimney has fallen off the roof and is now resting in the patio. Behind the chimney, one of the walls has a noticeable lean and the glass of one of the French doors is broken. The photographer comments, "The glass was broken by looters who entered the house and took bits that interested them".
An abandoned residential property at 28 Waygreen Avenue in New Brighton. The front of the section is covered with weeds and silt from liquefaction. Three broken chairs lie outside the front of the house. The front door is open. 'HM' has been spray-painted in green onto the front wall.
A damaged brick building on Centaurus Road with "Danger Keep Out" tape around the property. The brick walls have cracked and broken above two of the windows and a red sticker has been placed on the front window indicating that the building is unsafe to enter.
Damage to a house in Richmond. The brick wall is badly cracked and twisted, and some bricks have fallen, exposing the lining paper and framing below. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. I think it's broken".
Large cracks run through the brick cladding of this house in Wainoni. The photographer comments, "During the numerous earthquakes in Christchurch the land which ran alongside the Avon river on Avonside Drive slumped towards the waterway. Houses which were wooden framed and had an external brick veneer started to sink into the liquefied soil. This caused the brick walls to crack, but the houses' occupants though shook up were saved by the wooden framework from the houses collapsing on them".
A photograph of the earthquake damage to a stairwell in the Crowne Plaza Hotel on the corner of Kilmore and Durham Streets. Large sections of the concrete wall behind the stair rail have broken away to reveal the steel reinforcement underneath.
A photograph of street art by the DTR crew located on a factory wall in the central city. The artwork depicts the word "Freak" with the letters "DTR" written above it and topped with a crown. The window below the art is broken.
Damage to Lyttelton following the 22 February 2011 earthquake. Forbes' Store on Norwich Quay with a broken awning and damage visible on the brick walls. Scaffolding placed around the building since the 4 September 2010 earthquake has tumbled during the 22 February 2011 earthquake.
Damage to Lyttelton following the 22 February 2011 earthquake. Forbes' Store on Norwich Quay with a broken awning and damage visible on the brick walls. Scaffolding placed around the building since the 4 September 2010 earthquake has tumbled during the 22 February 2011 earthquake.
A photograph of the earthquake damage to a building in central Christchurch. Broken glass and other rubble litters the courtyard in front of the building. There is a large crack in the brick wall to the right. A red sticker on the glass door indicates that the building is unsafe to enter.
The front of Christ Church Cathedral showing its broken tower. Bracing has been placed on the front wall to limit further damage. Security fences have been placed around the cathedral to restrict access. The Wizard of Christchurch talks to members of the public. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look.
The front of Christ Church Cathedral showing its broken tower. Bracing has been placed on the front wall to limit further damage. Security fences have been placed around the cathedral to restrict access. The Wizard of Christchurch talks to members of the public. A walkway from Gloucester Street to the Square was opened up for a few days to allow the public a closer look.
Detail of damage to the former Princess Cinema in New Brighton. Bricks have fallen from the wall, exposing the interior. The photographer comments, "This is the back of the old Princess Cinema in New Brighton after the earthquake in Christchurch, New Zealand on 22 February. The bricks seem to be just on the edge of falling. This building has now been knocked down as it was so dangerous".
Damage to TJ's Kazbah in New Brighton. The east and north walls and part of the upper floor have collapsed, tipping rubble and the contents of the rooms out onto the street. The photographer comments, "The occupants of the business and rooms all managed to escape alive. A digger was used to make the building safe and then used to sift through the rubble for any surviving belongings. It was a very emotional time for the ex-occupants".
A badly damaged house in Burwood. Parts of the house have moved in different directions, leaving walls and doors misaligned. The photographer comments, "Although this looks like an extreme wide angle shot it is actually a house tilted in every direction at the same time. The earthquake caused the ground to vibrate and compress so much that the sandy soil liquefied and caused the ground to collapse under this modern home".
The Old Lyttelton Post Office, opened in 1874, showing damage after a series of earthquakes hit Christchurch and Lyttelton over the last 9 months. In the shadow of a broken house, Down a deserted street, Propt walls, cold hearths, and phantom stairs, And the silence of dead feet — Locked wildly in one another's arms I saw two lovers meet. ...
Damage to a house in Richmond. The foundation is all that remains of one room, and the exposed interior wall has been covered with builders' paper for protection. Weeds grow between cracks in the concrete patio. The photographer comments, "Revisiting our abandoned house. Cracked patio. The wooden floor is all that remains of a sunny living space with bifold doors, opening the house to the garden. This was so broken on 4/9/10 that it was immediately demolished".
Graffiti on a wooden wall depicts a child pointing at a site across the street and reads "I remember when the Kazbah was over there." The photographer comments, "A local street artist has commemorated Christchurch's deadliest earthquake. The anniversary is tomorrow. Where the photograph was taken was the site of the Ozone Hotel, which has now gone as well. For some of us who live and work in the East of Christchurch the earthquake was not what happened in the City as we were almost unaware of it. We had no water, toilets and most of all no electricity for weeks. For myself petrol was low and with tales of all the petrol stations on our side of town being damaged we could not take the chance of venturing out on severely damaged roads to find no petrol and the possibility of not getting home. We walked around and saw the damage that was local to us. TJ's Kazbah was one that stood out. A building that had a beauty with its round tower standing proud and always looked well kept - it was now collapsed. Its tower, which was once pointing towards the sky was laying on its side. It had kept its shape, but had a lightning shaped crack through it. The one thing that kept us feeling almost normal through the coming weeks was The Press our daily paper still being delivered even though the Press building and staff had suffered so badly themselves.
The recent instances of seismic activity in Canterbury (2010/11) and Kaikōura (2016) in New Zealand have exposed an unexpected level of damage to non-structural components, such as buried pipelines and building envelope systems. The cost of broken buried infrastructure, such as pipeline systems, to the Christchurch Council was excessive, as was the cost of repairing building envelopes to building owners in both Christchurch and Wellington (due to the Kaikōura earthquake), which indicates there are problems with compliance pathways for both of these systems. Councils rely on product testing and robust engineering design practices to provide compliance certification on the suitability of product systems, while asset and building owners rely on the compliance as proof of an acceptable design. In addition, forensic engineers and lifeline analysts rely on the same product testing and design techniques to analyse earthquake-related failures or predict future outcomes pre-earthquake, respectively. The aim of this research was to record the actual field-observed damage from the Canterbury and Kaikōura earthquakes of seismic damage to buried pipeline and building envelope systems, develop suitable testing protocols to be able to test the systems’ seismic resilience, and produce prediction design tools that deliver results that reflect the collected field observations with better accuracy than the present tools used by forensic engineers and lifeline analysts. The main research chapters of this thesis comprise of four publications that describe the gathering of seismic damage to pipes (Publication 1 of 4) and building envelopes (Publication 2 of 4). Experimental testing and the development of prediction design tools for both systems are described in Publications 3 and 4. The field observation (discussed in Publication 1 of 4) revealed that segmented pipe joints, such as those used in thick-walled PVC pipes, were particularly unsatisfactory with respect to the joint’s seismic resilience capabilities. Once the joint was damaged, silt and other deleterious material were able to penetrate the pipeline, causing blockages and the shutdown of key infrastructure services. At present, the governing Standards for PVC pipes are AS/NZS 1477 (pressure systems) and AS/NZS 1260 (gravity systems), which do not include a protocol for evaluating the PVC pipes for joint seismic resilience. Testing methodologies were designed to test a PVC pipe joint under various different simultaneously applied axial and transverse loads (discussed in Publication 3 of 4). The goal of the laboratory experiment was to establish an easy to apply testing protocol that could fill the void in the mentioned standards and produce boundary data that could be used to develop a design tool that could predict the observed failures given site-specific conditions surrounding the pipe. A tremendous amount of building envelope glazing system damage was recorded in the CBDs of both Christchurch and Wellington, which included gasket dislodgement, cracked glazing, and dislodged glazing. The observational research (Publication 2 of 4) concluded that the glazing systems were a good indication of building envelope damage as the glazing had consistent breaking characteristics, like a ballistic fuse used in forensic blast analysis. The compliance testing protocol recognised in the New Zealand Building Code, Verification Method E2/VM1, relies on the testing method from the Standard AS/NZS 4284 and stipulates the inclusion of typical penetrations, such as glazing systems, to be included in the test specimen. Some of the building envelope systems that failed in the recent New Zealand earthquakes were assessed with glazing systems using either the AS/NZS 4284 or E2/VM1 methods and still failed unexpectedly, which suggests that improvements to the testing protocols are required. An experiment was designed to mimic the observed earthquake damage using bi-directional loading (discussed in Publication 4 of 4) and to identify improvements to the current testing protocol. In a similar way to pipes, the observational and test data was then used to develop a design prediction tool. For both pipes (Publication 3 of 4) and glazing systems (Publication 4 of 4), experimentation suggests that modifying the existing testing Standards would yield more realistic earthquake damage results. The research indicates that including a specific joint testing regime for pipes and positioning the glazing system in a specific location in the specimen would improve the relevant Standards with respect to seismic resilience of these systems. Improving seismic resilience in pipe joints and glazing systems would improve existing Council compliance pathways, which would potentially reduce the liability of damage claims against the government after an earthquake event. The developed design prediction tool, for both pipe and glazing systems, uses local data specific to the system being scrutinised, such as local geology, dimensional characteristics of the system, actual or predicted peak ground accelerations (both vertically and horizontally) and results of product-specific bi-directional testing. The design prediction tools would improve the accuracy of existing techniques used by forensic engineers examining the cause of failure after an earthquake and for lifeline analysts examining predictive earthquake damage scenarios.