Search

found 92 results

Images, UC QuakeStudies

Detail of damage to a house in Richmond. The brick wall is badly cracked and twisted. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. More ruptured brickwork".

Images, UC QuakeStudies

Damage to a house in Richmond. The brick wall is badly cracked and twisted, and some bricks have fallen, exposing the lining paper below. The photographer comments, "These photos show our old house in River Rd. Bricks are skewed and pulled in several directions".

Images, UC QuakeStudies

A man signals directions to a car attempting to make a u-turn on the badly damaged River Road. The road surface is cracked and buckled. The photographer comments, "More stranded cars, and rubbernecking sightseers turning around to go back the way they came".

Images, UC QuakeStudies

A damaged wooden footbridge across the Avon River beside University Drive is blocked off with sheets of plywood and danger signs. The photographer comments, "The University restarts its teaching, and the techies in e-learning move out of NZi3. The bridge to the Rec Centre".

Images, UC QuakeStudies

Liquefaction silt covers the ground in front of the Shirley Medical Centre, and more silt is piled beside the entrance. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The local medical centre is seriously silted up".

Images, UC QuakeStudies

Liquefaction silt covers the ground in front of the Shirley Medical Centre, and more silt is piled beside the entrance. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The local medical centre is seriously silted up".

Images, UC QuakeStudies

The driveway has collapsed into a large sink hole in front of the Shirley Burger King. Warning tape cordons off the area. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. Shirley Burger King has driveway issues".

Images, UC QuakeStudies

Damage to the garden of a house in Richmond. Liquefaction is visible among the plants and on the driveway. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. Back lawn under 10cm of water and silt".

Images, UC QuakeStudies

Damage to a house in Richmond. The brick wall is badly cracked and twisted, and some bricks have fallen, exposing the lining paper and framing below. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. I think it's broken".

Images, UC QuakeStudies

Damage to Medway Street in Richmond. The road surface is cracked and buckled, and covered in liquefaction silt. A temporary road sign restricting speed to 30 is visible, with road cones behind. The photographer comments, "Medway St, between Woodchester Ave and River Rd. Woodchester Ave on right just beyond the 30 sign".

Images, UC QuakeStudies

Damage to a house in Richmond. Stucco underneath a window has cracked, and the foundation appears to be on a lean. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The bay window of our bedroom has jumped off the foundations, cracking the stucco".

Images, UC QuakeStudies

Water and liquefaction run down the driveway of a house in Richmond. The driveway level is noticeably higher than the footpath in front. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. A house along the block has water running out the driveway".

Images, UC QuakeStudies

Damage to a house in Richmond. The brick wall is badly cracked and twisted, and some bricks have fallen, exposing the lining paper below. The driveway is cracked and covered in liquefaction. The photographer comments, "These photos show our old house in River Rd. More shaking damage on the east wall of the living room at our house".

Images, UC QuakeStudies

Damage to a residential property in Richmond. The brick wall of the garage has collapse inward, and the roof fallen in on top of it. The driveway is badly cracked and buckled. The photographer comments, "These photos show our old house in River Rd. The brick garage just collapsed, pulling the gate over as it fell".

Images, UC QuakeStudies

Damage to a house in Richmond. The brick wall is badly cracked and twisted, and some bricks have fallen, exposing the lining paper and framing below. The driveway is cracked and covered in liquefaction. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. Does that wall look straight to you?

Images, UC QuakeStudies

Two people examine damage to a house in Richmond. The brick wall is badly cracked and twisted, and some bricks have fallen, exposing the lining paper and framing below. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The near wall is leaning at an alarming angle. I didn't like walking past it".

Images, UC QuakeStudies

A group of residents stand talking on the footpath beside River Road. The photographer comments, "Our neighbours were mostly already displaced by the Sep 4 2010 quakes. We all happened to arrive at the same time, so we had a good chat. From L-R; Deidre Crichton (389), Julie and Philip Cheyne (391), Marike Begg (363), Susannah and Kim Collins (383), Andy Corbin (389)".

Images, UC QuakeStudies

Damage to a house in Richmond. The brick wall is badly cracked and twisted, and some bricks have fallen, exposing the lining paper and framing below. The driveway is cracked and covered in liquefaction. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. More shaking damage on the east wall of the living room at our house".

Images, UC QuakeStudies

Damage to a house in Richmond. The brick wall is badly cracked and twisted, and some bricks have fallen, exposing the lining paper and framing below. The driveway is cracked and covered in liquefaction. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. More shaking damage on the east wall of the living room at our house".

Images, UC QuakeStudies

A car stuck in a large pothole on River Road. The wheels on the right hand side of the car have fallen into the hole, leaving the car grounded against the road surface. The photographer comments, "This car belonged to a postal delivery worker - the NZ Post bike rack is mounted on the towbar. The owner must have biked home. Later a tow truck arrived to extract the car from the hole that had opened under its front wheel".

Images, UC QuakeStudies

Detail of damage to a house in Richmond. A double-brick wall has collapsed, and a gap is visible between the house and its foundation. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The house and the concrete patio are now 15cm apart. The house took half the dining room's remaining bricks with it as it jumped off the foundations. It gives a good visual indication of the displacement".

Images, UC QuakeStudies

Damage to a residential property in Richmond. The brick wall of the garage has collapse inward, and the roof fallen in on top of it. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The neighbours behind us used the kayak to get in to their house - it's flooded by Dudley Creek which runs behind the block, plus major liquefaction. Our old garage provides a good spot to park it".

Images, UC QuakeStudies

Detail of damage to a house in Richmond. A double-brick wall has collapsed. A wire loop which formerly tied the two layers of bricks together has pulled out from one of the layers, showing how the two parts of the wall moved apart during the shaking. The photographer comments, "These photos show our old house in River Rd and recovery work around Richmond and St Albans. The remaining double brick by the back door has been further smashed and twisted".

Research papers, University of Canterbury Library

This literature review uses research informed by disasters including the Christchurch Earthquakes, Hurricane Katrina, Red River floods, War in Israel and natural disasters in Indonesia to identify key aspects within teacher-student relationships which result in an increase in the emotional stability of our students. These aspects include prior knowledge of students and their development, psycho-social interventions and incorporation of the disaster into the curriculum. Teacher-student relationships are highlighted as vital to a child’s healing and resilience after experiencing disaster trauma.

Images, UC QuakeStudies

Damage to the garden of a house in Richmond. Liquefaction is visible among the plants and on the driveway, and the driveway is badly cracked. The photographer comments, "These photos show our old house in River Rd. Water and silt have flattened the long grass in the back garden. The growth right of centre is suckers growing from the stump of a prunus tree we had felled last year. The section of fence between us and our neighbour fell down in the Sep 4 quake".

Research papers, University of Canterbury Library

Geospatial liquefaction models aim to predict liquefaction using data that is free and readily-available. This data includes (i) common ground-motion intensity measures; and (ii) geospatial parameters (e.g., among many, distance to rivers, distance to coast, and Vs30 estimated from topography) which are used to infer characteristics of the subsurface without in-situ testing. Since their recent inception, such models have been used to predict geohazard impacts throughout New Zealand (e.g., in conjunction with regional ground-motion simulations). While past studies have demonstrated that geospatial liquefaction-models show great promise, the resolution and accuracy of the geospatial data underlying these models is notably poor. As an example, mapped rivers and coastlines often plot hundreds of meters from their actual locations. This stems from the fact that geospatial models aim to rapidly predict liquefaction anywhere in the world and thus utilize the lowest common denominator of available geospatial data, even though higher quality data is often available (e.g., in New Zealand). Accordingly, this study investigates whether the performance of geospatial models can be improved using higher-quality input data. This analysis is performed using (i) 15,101 liquefaction case studies compiled from the 2010-2016 Canterbury Earthquakes; and (ii) geospatial data readily available in New Zealand. In particular, we utilize alternative, higher-quality data to estimate: locations of rivers and streams; location of coastline; depth to ground water; Vs30; and PGV. Most notably, a region-specific Vs30 model improves performance (Figs. 3-4), while other data variants generally have little-to-no effect, even when the “standard” and “high-quality” values differ significantly (Fig. 2). This finding is consistent with the greater sensitivity of geospatial models to Vs30, relative to any other input (Fig. 5), and has implications for modeling in locales worldwide where high quality geospatial data is available.

Research Papers, Lincoln University

We examined the stratigraphy of alluvial fans formed at the steep range front of the Southern Alps at Te Taho, on the north bank of the Whataroa River in central West Coast, South Island, New Zealand. The range front coincides with the Alpine Fault, an Australian-Pacific plate boundary fault, which produces regular earthquakes. Our study of range front fans revealed aggradation at 100- to 300-year intervals. Radiocarbon ages and soil residence times (SRTs) estimated by a quantitative profile development index allowed us to elucidate the characteristics of four episodes of aggradation since 1000 CE. We postulate a repeating mode of fan behaviour (fan response cycle [FRC]) linked to earthquake cycles via earthquake-triggered landslides. FRCs are characterised by short response time (aggradation followed by incision) and a long phase when channels are entrenched and fan surfaces are stable (persistence time). Currently, the Te Taho and Whataroa River fans are in the latter phase. The four episodes of fan building we determined from an OxCal sequence model correlate to Alpine Fault earthquakes (or other subsidiary events) and support prior landscape evolution studies indicating ≥M7.5 earthquakes as the main driver of episodic sedimentation. Our findings are consistent with other historic non-earthquake events on the West Coast but indicate faster responses than other earthquake sites in New Zealand and elsewhere where rainfall and stream gradients (the basis for stream power) are lower. Judging from the thickness of fan deposits and the short response times, we conclude that pastoral farming (current land-use) on the fans and probably across much of the Whataroa River fan would be impossible for several decades after a major earthquake. The sustainability of regional tourism and agriculture is at risk, more so because of the vulnerability of the single through road in the region (State Highway 6).

Research papers, University of Canterbury Library

Liquefaction-induced lateral spreading during earthquakes poses a significant hazard to the built environment, as observed in Christchurch during the 2010 to 2011 Canterbury Earthquake Sequence (CES). It is critical that geotechnical earthquake engineers are able to adequately predict both the spatial extent of lateral spreads and magnitudes of associated ground movements for design purposes. Published empirical and semi-empirical models for predicting lateral spread displacements have been shown to vary by a factor of <0.5 to >2 from those measured in parts of Christchurch during CES. Comprehensive post- CES lateral spreading studies have clearly indicated that the spatial distribution of the horizontal displacements and extent of lateral spreading along the Avon River in eastern Christchurch were strongly influenced by geologic, stratigraphic and topographic features.

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence 2010-2011 (CES) induced widespread liquefaction in many parts of Christchurch city. Liquefaction was more commonly observed in the eastern suburbs and along the Avon River where the soils were characterised by thick sandy deposits with a shallow water table. On the other hand, suburbs to the north, west and south of the CBD (e.g. Riccarton, Papanui) exhibited less severe to no liquefaction. These soils were more commonly characterised by inter-layered liquefiable and non-liquefiable deposits. As part of a related large-scale study of the performance of Christchurch soils during the CES, detailed borehole data including CPT, Vs and Vp have been collected for 55 sites in Christchurch. For this subset of Christchurch sites, predictions of liquefaction triggering using the simplified method (Boulanger & Idriss, 2014) indicated that liquefaction was over-predicted for 94% of sites that did not manifest liquefaction during the CES, and under-predicted for 50% of sites that did manifest liquefaction. The focus of this study was to investigate these discrepancies between prediction and observation. To assess if these discrepancies were due to soil-layer interaction and to determine the effect that soil stratification has on the develop-ment of liquefaction and the system response of soil deposits.