None
None
None
The concept of geoparks was first introduced in the first international conference on geoparks held in China in 2004. Here in New Zealand, Kiwis are accustomed to national parks, land reserves, marine reserves, and urban cities and regional parks. The concept of these protected areas has been long-standing in the country, whereas the UNESCO concept of geoparks is still novel and yet to be established in New Zealand. In this dissertation, I explored the geopark concept for better understanding of its merits and examined the benefits of geotourism attractions as a sustainable economic development strategy to retrieve a declining rural economy. This research is focused on Kaikoura as a case study with geological significance, and emphasizes pre-earthquake existing geological heritages and new existing geological heritages post-earthquake to determine whether the geopark concept is appropriate and what planning framework is available to process this concept proposal should Kaikoura be interested in future.
A blog post from US Ambassador to New Zealand and Samoa, David Huebner, titled, "Craig Weaver Remembers February 22nd".
Summary of oral history interview with Lianne Dalziel about her experiences of the Canterbury earthquakes.
A copy of the CanCERN online newsletter published on 2 November 2012
None
This one was really flowing out of the ground.
PDF slides from a presentation given by Dr. Thomas Wilson from the UC Geology department on 29 November 2010. The presentation was delivered at two public lectures, one at Lincoln University and another in Darfield.
The connections between walls of unreinforced masonry (URM) buildings and flexible timber diaphragms are critical building components that must perform adequately before desirable earthquake response of URM buildings may be achieved. Field observations made during the initial reconnaissance and the subsequent damage surveys of clay brick URM buildings following the 2010/2011 Canterbury, New Zealand, earthquakes revealed numerous cases where anchor connections joining masonry walls or parapets with roof or floor diaphragms appeared to have failed prematurely. These observations were more frequent for adhesive anchor connections than for through-bolt connections (i.e., anchorages having plates on the exterior facade of the masonry walls). Subsequently, an in-field test program was undertaken in an attempt to evaluate the performance of adhesive anchor connections between unreinforced clay brick URM walls and roof or floor diaphragm. The study consisted of a total of almost 400 anchor tests conducted in eleven existing URM buildings located in Christchurch, Whanganui and Auckland. Specific objectives of the study included the identification of failure modes of adhesive anchors in existing URM walls and the influence of the following variables on anchor load-displacement response: adhesive type, strength of the masonry materials (brick and mortar), anchor embedment depth, anchor rod diameter, overburden level, anchor rod type, quality of installation, and the use of metal mesh sleeves. In addition, the comparative performance of bent anchors (installed at an angle of minimum 22.5° to the perpendicular projection from the wall surface) and anchors positioned horizontally was investigated. Observations on the performance of wall-to-diaphragm connections in the 2010/2011 Canterbury earthquakes, a summary of the performed experimental program and test results, and a proposed pull-out capacity relationship for adhesive anchors installed into multi-leaf clay brick masonry are presented herein. AM - Accepted Manuscript
Transcript of Laurie Hill's earthquake story, captured by the UC QuakeBox project.
Transcript of Sherrilee's earthquake story, captured by the UC QuakeBox project.
Summary of oral history interview with Roman about her experiences of the Canterbury earthquakes.
None
These were scattered across the park.
Robbie watches a sand volcano smother his driveway.
Liquefaction-induced lateral spreading during earthquakes poses a significant hazard to the built environment, as observed in Christchurch during the 2010 to 2011 Canterbury Earthquake Sequence (CES). It is critical that geotechnical earthquake engineers are able to adequately predict both the spatial extent of lateral spreads and magnitudes of associated ground movements for design purposes. Published empirical and semi-empirical models for predicting lateral spread displacements have been shown to vary by a factor of <0.5 to >2 from those measured in parts of Christchurch during CES. Comprehensive post- CES lateral spreading studies have clearly indicated that the spatial distribution of the horizontal displacements and extent of lateral spreading along the Avon River in eastern Christchurch were strongly influenced by geologic, stratigraphic and topographic features.
PDF slides from a presentation given by Dr. Thomas Wilson from the UC Geology department on 18 November 2010 in Wellington. The presentation was delivered at a State Services Briefing at the Reserve Bank Seminar Room, and at a public talk for UC Alumni at the Wellington Club.
A copy of the CanCERN online newsletter published on 6 June 2014
Sand volcanoes put the silt all over the road.
The earthquake knocked over the bird bath.
Debra points at the beginnings of a sand volcano not long after the big earthquake.
An usual thing to see coming from the ground in Hoon Hay, Christchurch.
A pdf transcript of Danny's second earthquake story, captured by the UC QuakeBox Take 2 project. Interviewer: Samuel Hope. Transcriber: Josie Hepburn.
Laura, Nicola, and Debra watch a sand volcano build in the Wyn Street gutter.
(I righted the bird bath after the initial earthquake. None of the after-shocks were sufficient to knock it over again.)
Summary of oral history interview with Susan Allen about her experiences of the Canterbury earthquakes.
One of the many sand volcanos erupting from the ground after the Christchurch earthquake.
And, yes, the newspaper always gets through! The Press newspapers were delivered in our area of Hoon Hay in the hours after the earthquake.