Search

found 296 results

Research papers, The University of Auckland Library

The majority of current procedures used to deduce liquefaction potential of soils rely on empirical methods. These methods have been proven to work in the past, but these methods are known to overestimate the liquefaction potential in certain regions of Christchurch due to a whole range of factors, and the theoretical basis behind these methods cannot be explained scientifically. Critical state soil mechanics theory was chosen to provide an explanation for the soil's behaviour during the undrained shearing. Soils from two sites in Christchurch were characterised at regular intervals for the critical layers and tested for the critical state lines (CSL). Various models and relationships were then used to predict the CSL and compared with the actual CSL. However none of the methods used managed to predict the CSL accurately, and a separate Christchurch exclusive relationship was proposed. The resultant state parameter values could be obtained from shear-wave velocity plots and were then developed into cyclic resistance ratios (CRR). These were subsequently compared with cyclic stress ratios (CSR) from recent Christchurch earthquakes to obtain the factor of safety. This CSL-based approach was compared with other empirical methods and was shown to yield a favourable relationship with visual observations at the sites' locations following the earthquake.

Videos, UC QuakeStudies

A video of a presentation by Ross Butler, Chair of Otakaro Limited, at the 2016 Seismics in the City Conference. The presentation is titled, "Anchors Aweigh".The abstract for the presentation reads, "A review and preview of the development of the city's anchor projects once the Canterbury Earthquake Recovery Authority is disbanded in April."

Audio, Radio New Zealand

Many Christchurch residents have used shipping containers and other temporary structures to store belongings in while repairs were carried out after the earthquakes. But the Christchurch City Council says it's had an increase in complaints from residents about containers and other temporary structures obscuring neighbours' views or obstructing council berms. Chairman of the council's regulation and consents committee David East says if earthquake repairs are completed, the container may have to go.

Research papers, University of Canterbury Library

We’ll never know why the thirteen people whose corpses were discovered in Pompeii’s Garden of the Fugitives hadn’t fled the city with the majority of the population when Vesuvius turned deadly in AD79. But surely, thanks to 21st century technology, we know just about everything there is to know about the experiences of the people who went through the Canterbury Earthquakes. Or has the ubiquity of digital technology, combined with seemingly massive online information flows and archives, created a false sense that Canterbury’s earthquake stories, images and media are being secured for posterity? In this paper Paul Millar makes reference to issues experienced while creating the CEISMIC Canterbury Earthquakes Digital Archive (www.ceismic.org.nz) to argue that rather than having preserved all the information needed to fully inform recovery, the record of the Canterbury earthquakes’ impacts, and the subsequent response, is incomplete and unrepresentative. While CEISMIC has collected and curated over a quarter of a million earthquake-related items, Millar is deeply concerned about the material being lost. Like Pompeii, this disaster has its nameless, faceless, silenced victims; people whose stories must be heard, and whose issues must be addressed, if recovery is to be meaningful.

Research papers, The University of Auckland Library

Many large-scale earthquakes all over the world have highlighted the impact of soil liquefaction to the built environment, but the scale of liquefaction-induced damage experienced in Christchurch and surrounding areas following the 2010-2011 Canterbury earthquake sequence (CES) was unparalleled, especially in terms of impact to an urban area. The short time interval between the large earthquakes presented a very rare occasion to examine liquefaction mechanism in natural deposits. The re-liquefaction experienced by the city highlighted the high liquefaction susceptibility of soil deposits in Christchurch, and presented a very challenging problem not only to the local residents but to the geotechnical engineering profession. This paper summarises the lessons learned from CES, and the impacts of the observations made to the current practice of liquefaction assessment and mitigation.

Research papers, University of Canterbury Library

The 2010-2011 Canterbury earthquake sequence, and the resulting extensive data sets on damaged buildings that have been collected, provide a unique opportunity to exercise and evaluate previously published seismic performance assessment procedures. This poster provides an overview of the authors’ methodology to perform evaluations with two such assessment procedures, namely the P-58 guidelines and the REDi Rating System. P-58, produced by the Federal Emergency Management Agency (FEMA) in the United States, aims to facilitate risk assessment and decision-making by quantifying earthquake ground shaking, structural demands, component damage and resulting consequences in a logical framework. The REDi framework, developed by the engineering firm ARUP, aids stakeholders in implementing resilience-based earthquake design. Preliminary results from the evaluations are presented. These have the potential to provide insights on the ability of the assessment procedures to predict impacts using “real-world” data. However, further work remains to critically analyse these results and to broaden the scope of buildings studied and of impacts predicted.