Search

found 76 results

Research papers, Victoria University of Wellington

As cities evolve, change and grow, the need and desire for adaptable architecture becomes evident across the nation. Architecture needs to undertake techniques that are flexible in order to adapt and align with the development of future generations in New Zealand.  The Education industry is a primary example of a sector which requires flexibility within both classroom architectural form and interior configuration. This is a resultant of the recently updated Ministry of Education requirements; which state that every new classroom built or renovated nationwide, must implement the MoE classroom design standards for Innovative Learning Environments.  ILE teaching spaces are configured as an open plan interior, supporting flexibility in classroom arrangement and teaching techniques. ILE classrooms are capable of evolving and adapting as educational practices evolve and change, allowing schools to remain modern and future focused.  As part of this movement to ILE, the Ministry of Education has also recently made an attempt to improve the quality of temporary classrooms. This has been done by looking into the initiation of a programme that utilizes relocatable classroom buildings. Relocatable classrooms have been selected for multiple reasons, primarily flexibility. Flexibility is key for a school environment as it allows the school to actively respond to fluctuating school rolls. It is anticipated that the programme will provide a faster delivery process with a standardised design that allows the classrooms to be relocated from one school to another with relative ease.  Following the devastating February 2011 earthquake the Greater Christchurch Region, the Education sector is in the midst of the Canterbury Schools Rebuild Programme. As a repercussion of this natural disaster, the majority of Christchurch schools have redevelopment or rebuild projects in progress, with preliminary design phases already in action for a small group of select schools regarded as high priority.  The primary funding for these projects are sourced from insurance money, implementing tight budget restrictions, affecting the architectural design, quality and speed of the construction and repair works. The available funding limits the affordable classroom options to basic teaching spaces that have been stripped back to simple architectural forms, dictating not only the re-design, but also how our future generations will learn. Thus causing the development of the new student-led learning ILE concept to become controlled by existing construction techniques and the Rebuild Programmes budget restrictions.  This thesis focuses on the future proofing of New Zealand schools by providing an affordable and time efficient alternative option to the current static, traditional construction, an option that has the ability to cater to the unpredictable fluctuating school rolls across the nation.  This has been done by developing a prefabricated system for standalone classroom blocks. These blocks have the ability to be relocated between different school sites, dynamically catering to the unpredictable school roll numbers experienced across New Zealand. This site flexibility is reflected with the interior flexibility in the classrooms, enhancing the internal teaching space composition and challenges the existing design standards set by the Ministry of Education for Innovative Learning Environments. This system is called “Flexi-Ed”.  Flexibility has been a key driver for this thesis, as the prefabricated structure is have to be flexible in three ways; first in the sense of being easy to assemble and disassemble. Second by offering flexible interior learning environments and thirdly the joints of the structure are designed with the ability to be flexible in order to cope with seismic activity. These three principles will provide schools with long term flexibility, minimal on-site interruption and heighten the standard of ILE across the nation.  I strive to provide schools with long term flexibility and minimal site interruption, whilst heightening the standard of Innovative Learning Environments across New Zealand.

Audio, Radio New Zealand

Hon SIMON BRIDGES to the Prime Minister: Does she stand by all her Government’s policies and actions? KIRITAPU ALLAN to the Minister of Finance: What reports has he seen on the need for innovation in the New Zealand economy? Hon AMY ADAMS to the Minister of Finance: Does he agree with the Prime Minister’s comment, “I absolutely believe that our agenda will grow the economy, will make sure businesses are in a position to grow and prosper, because I need that economic growth to be able to lift the well-being of all New Zealanders”? Hon PAUL GOLDSMITH to the Minister for Economic Development: Does he still think the ANZ survey of business confidence is junk? Dr DUNCAN WEBB to the Minister of Justice: What recent announcements has he made about the Family Court? Hon MICHAEL WOODHOUSE to the Minister of Immigration: Does he stand by all of his statements and actions? JONATHAN YOUNG to the Minister of Energy and Resources: What advice, if any, did she receive in respect of the obligation to act in accordance with the Minerals Programme for Petroleum regarding the Government’s decision to offer no new offshore permits? ANDREW BAYLY to the Minister for Building and Construction: What procedures, if any, will she put into place to ensure Government agencies adhere to MBIE’s Government procurement guidelines for construction projects? Hon Dr NICK SMITH to the Minister of Justice: Does he stand by all of his statements on the Electoral (Integrity) Amendment Bill and the potential chilling effect it will have on the expression of dissenting views? CHRIS BISHOP to the Minister of Internal Affairs: Does she stand by all her statements around the Government inquiry into the appointment of the Deputy Commissioner of Police? Dr LIZ CRAIG to the Minister of Health: What confidence can the public take from the review of the National Bowel Screening Programme that was released this morning? STUART SMITH to the Minister of Justice: What advice, if any, has he received on the need for the Canterbury Earthquakes Insurance Tribunal?

Research papers, The University of Auckland Library

Seismic retrofitting of unreinforced masonry buildings using posttensioning has been the topic of many recent experimental research projects. However, the performance of such retrofit designs in actual design level earthquakes has previously been poorly documented. In 1984 two stone masonry buildings within The Arts Centre of Christchurch received posttensioned seismic retrofits, which were subsequently subjected to design level seismic loads during the 2010/2011 Canterbury earthquake sequence. These 26 year old retrofits were part of a global scheme to strengthen and secure the historic building complex and were subject to considerable budgetary constraints. Given the limited resources available at the time of construction and the current degraded state of the steel posttension tendons, the posttensioned retrofits performed well in preventing major damage to the overall structure of the two buildings in the Canterbury earthquakes. When compared to other similar unretrofitted structures within The Arts Centre, it is demonstrated that the posttensioning significantly improved the in-plane and out-of-plane wall strength and the ability to limit residual wall displacements. The history of The Arts Centre buildings and the details of the Canterbury earthquakes is discussed, followed by examination of the performance of the posttension retrofits and the suitability of this technique for future retrofitting of other historic unreinforced masonry buildings. http://www.aees.org.au/downloads/conference-papers/2013-2/

Research papers, The University of Auckland Library

Seismic retrofitting of unreinforced masonry buildings using posttensioning has been the topic of many recent experimental research projects. However, the performance of such retrofit designs in actual design level earthquakes has previously been poorly documented. In 1984 two stone masonry buildings within The Arts Centre of Christchurch received posttensioned seismic retrofits, which were subsequently subjected to design level seismic loads during the 2010/2011 Canterbury earthquake sequence. These 26 year old retrofits were part of a global scheme to strengthen and secure the historic building complex and were subject to considerable budgetary constraints. Given the limited resources available at the time of construction and the current degraded state of the steel posttension tendons, the posttensioned retrofits performed well in preventing major damage to the overall structure of the two buildings in the Canterbury earthquakes. When compared to other similar unretrofitted structures within The Arts Centre, it is demonstrated that the posttensioning significantly improved the in-plane and out-of-plane wall strength and the ability to limit residual wall displacements. The history of The Arts Centre buildings and the details of the Canterbury earthquakes is discussed, followed by examination of the performance of the posttension retrofits and the suitability of this technique for future retrofitting of other historic unreinforced masonry buildings. http://www.aees.org.au/downloads/conference-papers/

Audio, Radio New Zealand

Hon PHIL HEATLEY to the Minister of Finance: What reports has he received on the economy – and especially on further signs of economic momentum in the regions and among manufacturers? Dr RUSSEL NORMAN to the Minister of Finance: How much did the Government's share sales in Mighty River Power, Meridian, and Air New Zealand raise, given that the Supplement to the 2010 Investment Statement of the Government of New Zealand projected that those sales would raise $5.18 billion? Hon DAVID PARKER to the Minister for ACC: How much did ACC invest in Pike River Coal Limited and in New Zealand Oil and Gas Limited over the last eight years, and how much has it made or lost in total on its investment in each company, taking into account share purchases, subscriptions and sales, dividends, and current share prices? Rt Hon WINSTON PETERS to the Minister of Māori Affairs: Does he stand by his statement "I know Māori want to talk about the place of the Treaty of Waitangi in our constitution, and how our legal and political systems can reflect tikanga Māori."; if so, why? Hon SHANE JONES to the Associate Minister of Finance: Is he satisfied with his performance in regard to his delegations as Associate Minister of Finance? JONATHAN YOUNG to the Minister for Building and Construction: What reports has he received regarding the state of the building and construction sector? GARETH HUGHES to the Minister for the Environment: Did the Environmental Protection Authority assess the full version of Anadarko's Discharge Management Plan and Emergency Response Plan as part of its evaluation of the company's Environmental Impact Assessment for the Deepwater Taranaki Well; if not, why not? Hon CLAYTON COSGROVE to the Minister of Finance: When, if at all, did Cabinet approve the timing of the Air New Zealand sell-down and what directions did Cabinet give the shareholding Ministers? NICKY WAGNER to the Minister of Housing: What steps is the Government taking to rebuild Christchurch's housing stock damaged or destroyed by the earthquakes? Hon DAMIEN O'CONNOR to the Minister for Primary Industries: Does he stand by his statement "The opportunity, and challenge, for our meat producers now is to add value to different cuts of meat and continue to sell the New Zealand story"; if so, why? IAN McKELVIE to the Minister of Local Government: How is the Government improving councils' financial reporting? DARIEN FENTON to the Minister of Labour: Does he stand by his statement that "I am especially keen to hear what affected parties have to say on the Part 6A proposals in the Bill, and will carefully consider their submissions and the recommendations of the select committee"?

Research Papers, Lincoln University

There is a critical strand of literature suggesting that there are no ‘natural’ disasters (Abramovitz, 2001; Anderson and Woodrow, 1998; Clarke, 2008; Hinchliffe, 2004). There are only those that leave us – the people - more or less shaken and disturbed. There may be some substance to this; for example, how many readers recall the 7.8 magnitude earthquake centred in Fiordland in July 2009? Because it was so far away from a major centre and very few people suffered any consequences, the number is likely to be far fewer than those who remember (all too vividly) the relatively smaller 7.1 magnitude Canterbury quake of September 4th 2010 and the more recent 6.3 magnitude February 22nd 2011 event. One implication of this construction of disasters is that seismic events, like those in Canterbury, are as much socio-political as they are geological. Yet, as this paper shows, the temptation in recovery is to tick boxes and rebuild rather than recover, and to focus on hard infrastructure rather than civic expertise and community involvement. In this paper I draw upon different models of community engagement and use Putnam’s (1995) notion of ‘social capital’ to frame the argument that ‘building bridges’ after a disaster is a complex blend of engineering, communication and collaboration. I then present the results of a qualitative research project undertaken after the September 4th earthquake. This research helps to illustrate the important connections between technical rebuilding, social capital, recovery processes and overall urban resilience.

Research papers, University of Canterbury Library

The Sendai Framework for Disaster Risk Reduction 2015-2030 finds that, despite progress in disaster risk reduction over the last decade “evidence indicates that exposure of persons and assets in all countries has increased faster than vulnerability has decreased, thus generating new risk and a steady rise in disaster losses” (p.4, UNISDR 2015). Fostering cooperation among relevant stakeholders and policy makers to “facilitate a science-policy interface for effective decisionmaking in disaster risk management” is required to achieve two priority areas for action, understanding disaster risk and enhancing disaster preparedness (p. 13, p. 23, UNISDR 2015). In other topic areas, the term science-policy interface is used interchangeably with the term boundary organisation. Both terms are usually used refer to systematic collaborative arrangements used to manage the intersection, or boundary, between science and policy domains, with the aim of facilitating the joint construction of knowledge to inform decision-making. Informed by complexity theory, and a constructivist focus on the functions and processes that minimize inevitable tensions between domains, this conceptual framework has become well established in fields where large complex issues have significant economic and political consequences, including environmental management, biodiversity, sustainable development, climate change and public health. To date, however, there has been little application of this framework in the disaster risk reduction field. In this doctoral project the boundary management framework informs an analysis of the research response to the 2010-2011 Canterbury Earthquake Sequence, focusing on the coordination role of New Zealand’s national Natural Hazards Research Platform. The project has two aims. It uses this framework to tell the nuanced story of the way this research coordination role evolved in response to both the complexity of the unfolding post-disaster environment, and to national policy and research developments. Lessons are drawn from this analysis for those planning and implementing arrangements across the science-policy boundary to manage research support for disaster risk reduction decision-making, particularly after disasters. The second aim is to use this case study to test the utility of the boundary management framework in the disaster risk reduction context. This requires that terminology and concepts are explained and translated in terms that make this analysis as accessible as possible across the disciplines, domains and sectors involved in disaster risk reduction. Key findings are that the focus on balance, both within organisations, and between organisations and domains, and the emphasis on systemic effects, patterns and trends, offer an effective and productive alternative to the more traditional focus on individual or organisational performance. Lessons are drawn concerning the application of this framework when planning and implementing boundary organisations in the hazard and disaster risk management context.

Research papers, The University of Auckland Library

While societal messages can encourage an unhealthy strive for perfection, the notion of embracing individual flaws and openly displaying vulnerabilities can appear foreign and outlandish. However, when fallibility is acknowledged and imperfection embraced, intimate relationships built on foundations of acceptance, trust and understanding can be established. In an architectural context, similar deep-rooted connections can be formed between a people and a place through the retention of layers of historical identity. When a building is allowed to age with blemishes laid bare for all to see, an architectural work can exhibit a sense of 'humanising vulnerability' where the bruises and scars it bears are able to visually communicate its contextual narrative. This thesis explores the notion of designing to capitalise on past decay through revitalisation of the former Wood Brothers Flour Mill in Addington, Christchurch (1891). Known as one of the city's last great industrial buildings, the 130-year-old structure remains hugely impressive due to its sheer size and scale despite being abandoned and subject to vandalism for a number of years. Its condition of obsolescence ensured the retention of visible signs of wear and tear in addition to the extensive damage caused by the 2010-12 Canterbury earthquakes. In offering a challenge to renovation and reconstruction as a means of conservation, this thesis asks if 'doing less' has the potential to 'do more'. How can an understanding of architecture as an ongoing process inform a design approach to celebrate ageing and patina? While the complex is undergoing redevelopment at the time of writing, the design project embraces the condition of the historic buildings in the immediate aftermath of the earthquakes and builds upon the patina of the mill and adjacent flour and grain store in developing a design for their adaptation as a micro-distillery. Research into the traditional Japanese ideology of wabi-sabi and its practical applications form the basis for a regenerative design approach which finds value in imperfection, impermanence and incompleteness. The thesis combines a literature review, precedent review and site analysis together with a design proposal. This thesis shows that adaptive reuse projects can benefit from an active collaboration with the processes of decay. Instead of a mindset where an architectural work is considered the finished article upon completion of construction, an empathetic and sensitive design philosophy is employed in which careful thought is given to the continued preservation and evolution of a structure with the recognition that evidence of past wear, tear, patina and weathering can all contribute positively to a building's future. In this fashion, rather than simply remaining as relics of the past, buildings can allow the landscape of their urban context to shape and mould them to ensure that their architectural experience can continue to be enjoyed by generations to come.

Audio, Radio New Zealand

Questions to Ministers 1. CRAIG FOSS to the Minister of Finance: What challenges does the Government face in putting together Budget 2011? 2. Dr RUSSEL NORMAN to the Prime Minister: Does he stand by his pre-Budget statement "The key sector which is not saving right now is the Government"; if so, what steps has he taken to increase government revenue? 3. Dr RUSSEL NORMAN to the Prime Minister: Does he stand by his statement "…we can use this time to transform the economy to make us stronger…"; if so, does this transformation involve an economy that uses fewer natural resources and produces less pollution? 4. Hon PHIL GOFF to the Prime Minister: Does he stand by all his statements on KiwiSaver? 5. NICKY WAGNER to the Minister for Canterbury Earthquake Recovery: What reports has he received on progress made to provide winter heating for residents affected by the Canterbury earthquakes? 6. Hon ANNETTE KING to the Prime Minister: What advice did he receive from the most recent food bank he visited about the current cost of living? 7. JACQUI DEAN to the Minister for the Environment: What practical initiatives is the Government taking in preparation for Rugby World Cup 2011 to protect the environment and New Zealand's important clean green brand? 8. Hon DAVID CUNLIFFE to the Minister of Finance: What was the annual rate of GDP growth for the year ended December 2010 projected in Budget 2010, and what was the actual rate of growth for that period according to Statistics New Zealand? 9. AARON GILMORE to the Minister of Education: What recent decisions have been made regarding schooling in Christchurch? 10. SUE MORONEY to the Minister of Education: When was construction completed on the new early childhood education centre at Weymouth Primary School and why is the centre empty? 11. COLIN KING to the Minister of Agriculture: What steps has the Government recently taken to support innovation in the Manuka honey industry? 12. CARMEL SEPULONI to the Minister of Justice: Does he stand by his statement "This Government is committed to ensuring that everyone…has access to justice"?

Research papers, University of Canterbury Library

This project was initiated by ENGEO Limited and KiwiRail Holdings Limited to assess the stability of Slovens Creek Viaduct (specifically its western abutment) and a 3km section of rail corridor between Slovens Creek Viaduct and Avoca on the Midland Line (MDL). Commonly known as the scenic TranzAlpine rail journey (through Arthurs Pass National Park) the MDL connects Greymouth to Christchurch via Rolleston, where the MDL meets the Main South Line into Christchurch. The project area is approximately 40km southeast of Arthurs Pass Township, in the eastern extension of the Castle Hill Basin which is part of the Waimakariri Catchment and Canterbury Foothills. The field area is underlain by Rakaia Terrane, which is part of the Torlesse Composite Terrane forming the basement rock unit for the field area. Cretaceous-Tertiary rocks of the Castle Hill Basin overlie the basement strata and record a transgression-regression sequence, as well as mid-Oligocene submarine volcanism. The stratigraphic sequence in the Castle Hill Basin, and its eastern extension to Avoca, comprises two formations of the Eyre group, the older Broken River Formation and the younger Iron Creek Formation. Deep marine Porter Group limestones, marls, and tuffs of Oligocene age succeed the Iron Creek Formation of the Eyre Group, and probably records the maximum of the transgression. The Enys Formation lies disconformably on the Porter Group and is overlain unconformably by Late Pleistocene glacifluvial and glacial deposits. The Tertiary strata in the Slovens-Avoca rail corridor are weak, and the clay-rich tuff derived from mid-Oligocene volcanism is particularly prone to slaking. Extensive mapping carried out for this project has identified that some 90 percent of the surface along the length of the Slovens-Avoca corridor has been subject to mass movement. The landslides of the Slovens-Avoca rail corridor are clearly younger than the Last Glaciation, and Slovens Creek has been downcutting, with associated faulting and uplift, to form the present day geomorphology of the rail corridor. Deep-seated landslides in the rail corridor extend to Slovens Creek, locally deflecting the stream course, and a generic ground failure model for the rail corridor has been developed. Exploratory geotechnical investigations, including core drilling, installation of an inclinometer and a piezometer, enabled the construction of a simple ground model and cross section for the Slovens Creek Viaduct western abutment. Limit-equilibrium and pseudo-static slope stability analyses using both circular and block critical slip surface search methods were applied to the ground model for the western abutment of Slovens Creek Viaduct. Piezometric and strength data obtained during laboratory testing of core material have been used to constrain the western abutment stability assessment for one representative section line (C-C’). Prior to pseudo-static sensitivity analyses peak ground acceleration (PGA) for various Ultimate Limit State (ULS) design return periods, defined by an equation given in NZS1170.5:2004, were calculated and have been used as a calibration technique to find and compare specific PGA values for pseudo-static analyses in the Slovens Creek Viaduct area. The main purpose has been to provide an indication of how railway infrastructure could be affected by seismic events of various return periods defined by ULS design standards for the area. Limit equilibrium circular slip surface search methods, both grid search and auto refine search, indicated the slope is stable with a FoS greater than 1.0 returned from each, although one particular surface returned the lowest FoS in each. This surface is in the lower portion of the slope, adjacent to Slovens Stream and northeast of the MDL. As expected, pseudo-static analyses returned a lower FoS overall when compared to limit equilibrium analyses. The PGA analyses suggest that partial ground failure at the Slovens Creek Viaduct western abutment could occur in a 1 in 25-year return period event within materials on the slower slope beyond the immediate rail corridor. A ULS (1 in 500-year) event in the Slovens Creek Viaduct area would likely produce a PGA of ~0.9g, and the effects on the western abutment and rail infrastructure would most likely be catastrophic. Observed ground conditions for the western abutment of the Slovens Creek Viaduct suggest there is no movement within the landslide at depth within the monitoring timeframe of this project (22 May 2015 – 4 August 2015). Slope stability monitoring is recommended to be continued in two parts: (1) the inclinometer in BH1 is to be monitored on a six monthly basis for one year following completion of this thesis, and then annually unless ground movements become evident; and (2) surface movement monitoring should be installed using a fixed datum on the stable eastern abutment. Long-term stability management strategies for the Slovens Creek Viaduct western abutment are dependent upon future observed changes and ongoing monitoring. Hazard and risk assessment using the KiwiRail Qualitative Risk Assessment Framework (QRA) is recommended, and if slope stability becomes problematic for operation of the Midland Line consideration should be given to deep slope drainage. In the event of a large magnitude or high PGA earthquake all monitoring should be reviewed.

Research papers, University of Canterbury Library

The Canterbury Earthquake Sequence (CES) of 2010-2011 produced large seismic moments up to Mw 7.1. These large, near-to-surface (<15 km) ruptures triggered >6,000 rockfall boulders on the Port Hills of Christchurch, many of which impacted houses and affected the livelihoods of people within the impacted area. From these disastrous and unpredicted natural events a need arose to be able to assess the areas affected by rockfall events in the future, where it is known that a rockfall is possible from a specific source outcrop but the potential boulder runout and dynamics are not understood. The distribution of rockfall deposits is largely constrained by the physical properties and processes of the boulder and its motion such as block density, shape and size, block velocity, bounce height, impact and rebound angle, as well as the properties of the substrate. Numerical rockfall models go some way to accounting for all the complex factors in an algorithm, commonly parameterised in a user interface where site-specific effects can be calibrated. Calibration of these algorithms requires thorough field checks and often experimental practises. The purpose of this project, which began immediately following the most destructive rupture of the CES (February 22, 2011), is to collate data to characterise boulder falls, and to use this information, supplemented by a set of anthropogenic boulder fall data, to perform an in-depth calibration of the three-dimensional numerical rockfall model RAMMS::Rockfall. The thesis covers the following topics: • Use of field data to calibrate RAMMS. Boulder impact trails in the loess-colluvium soils at Rapaki Bay have been used to estimate ranges of boulder velocities and bounce heights. RAMMS results replicate field data closely; it is concluded that the model is appropriate for analysing the earthquake-triggered boulder trails at Rapaki Bay, and that it can be usefully applied to rockfall trajectory and hazard assessment at this and similar sites elsewhere. • Detailed analysis of dynamic rockfall processes, interpreted from recorded boulder rolling experiments, and compared to RAMMS simulated results at the same site. Recorded rotational and translational velocities of a particular boulder show that the boulder behaves logically and dynamically on impact with different substrate types. Simulations show that seasonal changes in soil moisture alter rockfall dynamics and runout predictions within RAMMS, and adjustments are made to the calibration to reflect this; suggesting that in hazard analysis a rockfall model should be calibrated to dry rather than wet soil conditions to anticipate the most serious outcome. • Verifying the model calibration for a separate site on the Port Hills. The results of the RAMMS simulations show the effectiveness of calibration against a real data set, as well as the effectiveness of vegetation as a rockfall barrier/retardant. The results of simulations are compared using hazard maps, where the maximum runouts match well the mapped CES fallen boulder maximum runouts. The results of the simulations in terms of frequency distribution of deposit locations on the slope are also compared with those of the CES data, using the shadow angle tool to apportion slope zones. These results also replicate real field data well. Results show that a maximum runout envelope can be mapped, as well as frequency distribution of deposited boulders for hazard (and thus risk) analysis purposes. The accuracy of the rockfall runout envelope and frequency distribution can be improved by comprehensive vegetation and substrate mapping. The topics above define the scope of the project, limiting the focus to rockfall processes on the Port Hills, and implications for model calibration for the wider scientific community. The results provide a useful rockfall analysis methodology with a defensible and replicable calibration process, that has the potential to be applied to other lithologies and substrates. Its applications include a method of analysis for the selection and positioning of rockfall countermeasure design; site safety assessment for scaling and demolition works; and risk analysis and land planning for future construction in Christchurch.

Audio, Radio New Zealand

RON MARK to the Prime Minister: Does he stand by all his statements; if so, how? ANDREW LITTLE to the Prime Minister: Does he stand by his statement that &ldquo;if you see house prices rising, you might say the Government needs to do more&rdquo; and &ldquo;we take responsibility, we need to do a better job of it&rdquo;? SARAH DOWIE to the Minister of Finance: What international reports has he received showing New Zealand&rsquo;s economic growth remains robust? Hon ANNETTE KING to the Minister of Health: On what date was the Ministry of Health first made aware of data manipulation of the six-hour Emergency Department target by district health boards? CHRIS BISHOP to the Minister for Economic Development: What recent announcements has the Government made regarding support for earthquake-affected businesses? METIRIA TUREI to the Minister for Building and Housing: Ka tū a ia i runga i te mana o tana kōrero, &ldquo;The proportion of New Zealanders living in rental homes is not changing dramatically and owner-occupiers will remain the dominant living arrangement for most Kiwi families into the future&rdquo; i te mea, ā, e ai ki ngā tatauranga hou, nō mai anō i te tau Kotahi mano, iwa rau, rima tekau mā tahi, i taka ai te hunga whiwhi i tōna ake whare, ki raro rā nō? Translation: Does he stand by his statement that &ldquo;The proportion of New Zealanders living in rental homes is not changing dramatically and owner-occupiers will remain the dominant living arrangement for most Kiwi families into the future&rdquo; given that home ownership is at its lowest level since 1951, according to the latest census? STUART SMITH to the Minister for Primary Industries: What recent announcements has he made regarding support for earthquake-affected primary sectors? GRANT ROBERTSON to the Minister of Finance: Does he agree with the Prime Minister&rsquo;s statement that Treasury forecasts are &ldquo;a load of nonsense, because they can&rsquo;t get predications in 44 days right, let alone 44 years&rdquo;? ALFRED NGARO to the Minister for Building and Housing: What additional Auckland housing projects did he announce during last week&rsquo;s recess, and what are the latest reports on the growth in construction across Auckland showing? Dr MEGAN WOODS to the Minister responsible for the Earthquake Commission: Is he confident EQC will be employing the necessary resource to process and settle claims, from both the Canterbury earthquake sequence and the earthquake sequence of a fortnight ago, after 16 December; if so, why? DAVID SEYMOUR to the Minister of Police: What reassurance can she give to Epsom residents concerned that their Community Policing Centre will cease to operate after 24 years? IAN McKELVIE to the Minister of Commerce and Consumer Affairs: What announcements has he made recently that support the continued growth of the New Zealand wine export market?

Audio, Radio New Zealand

Questions to Ministers 1. Hon RODNEY HIDE to the Acting Minister of Energy and Resources: Does she accept her Ministry's advice that the value of New Zealand's onshore minerals excluding hydrocarbons is $194 billion overall with $80 billion estimated in Schedule 4 land; if so, what plans does the Government have to allow their development? 2. Hon PHIL GOFF to the Minister for the Rugby World Cup: What advice has the Prime Minister, the Government or Rugby New Zealand 2011 been given on Christchurch's ability to host Rugby World Cup matches later this year? 3. CHESTER BORROWS to the Minister of Finance: What reports has he received on the economy's prospects after New Zealand meets the immediate challenges of the Christchurch earthquake? 4. Hon DAVID CUNLIFFE to the Minister for Communications and Information Technology: Would he indicate his agreement to a further extension, if it were required, to the report back date for the Telecommunications (TSO, Broadband and Other Matters) Amendment Bill? 5. TE URUROA FLAVELL to the Minister of Agriculture: Is he concerned to learn that New Zealand's first majority Māori-owned dairy company, Miraka, has reportedly stated that there is a serious risk that Fonterra's proposed Trading Among Farmers exchange will be illiquid, volatile and unstable; if so, what assurances can he give Miraka and other dairy processors and industry groups, that anti-competitive behaviour will not be tolerated? 6. Hon DAVID PARKER to the Acting Minister for Economic Development: Has he been advised by the Prime Minister whether his appointment as Acting Minister for Economic Development is temporary or expected to carry on to the election? 7. JO GOODHEW to the Minister of Education: What progress has been made on re-opening Christchurch schools and early childhood education centres since the 22 February earthquake? 8. GRANT ROBERTSON to the Minister of Health: Does he favour the sale of any public hospitals in New Zealand; if so, which one or ones? 9. SIMON BRIDGES to the Minister for Building and Construction: What advice has he received from the Department of Building and Housing regarding last month's Christchurch earthquake? 10. DARIEN FENTON to the Minister of Labour: What factors did she consider in deciding to increase the minimum wage by 25 cents from 1 April in her latest review? 11. CHRIS TREMAIN to the Minister of Transport: What progress has been made on roading projects in the Hawke's Bay region? 12. GARETH HUGHES to the Minister of Finance: What steps, if any, is he taking to reduce New Zealand's economic vulnerability that stems from dependence on oil? Questions to Members 1. Hon DAVID CUNLIFFE to the Chairperson of the Finance and Expenditure Committee: How many submissions have been received so far on the Telecommunications (TSO, Broadband and Other Matters) Amendment Bill? 2. Hon DAVID CUNLIFFE to the Chairperson of the Finance and Expenditure Committee: How many submitters on the Telecommunications (TSO, Broadband and Other Matters) Amendment Bill have requested an oral hearing? 3. Hon DAVID CUNLIFFE to the Chairperson of the Finance and Expenditure Committee: Is he aware of any complaints about times allocated to submitters on the Telecommunications (TSO, Broadband and Other Matters) Amendment Bill?

Research papers, University of Canterbury Library

Recent earthquakes have highlighted the vulnerability of existing structure to seismic loading. Current seismic retrofit strategies generally focus on increasing the strength/stiffness in order to upgrade the seismic performance of a structure or element. A typical drawback of this approach is that the demand on the structural and sub-structural elements can be increased. This is of particular importance when considering the foundation capacity, which may already be insufficient to allow the full capacity of the existing wall to develop (due to early codes being gravity load orientated). In this thesis a counter intuitive but rational seismic retrofit strategy, termed "selective weakening" is introduced and investigated. This is the first stage of an ongoing research project underway at the University of Canterbury which is focusing on developing selective weakening techniques for the seismic retrofit of reinforced concrete structures. In this initial stage the focus is on developing selective weakening for the seismic retrofit of structural walls. This is performed using a series of experimental, analytical and numerical investigations. A procedure for the assessment of existing structural walls is also compiled, based on the suggestions of currently available code provisions. A selective weakening intervention is performed within an overall performance-based retrofit approach with the aim of improving the inelastic behaviour by first reducing the strength/stiffness of specific members within the structural system. This will be performed with the intention of modifying a shear type behaviour towards a flexural type behaviour. As a result the demand on the structural member will be reduced. Once weakening has been implemented the designer can use the wide range of techniques and materials available (e.g. use of FRP, jacketing or shotcrete) to ensure that adequate characteristics are achieved. Whilst performing this it has to be assured that the structure meets specific performance criteria and the principles of capacity design. A target of the retrofit technique is the ability to introduce the characteristics of recently developed high performance seismic resisting systems, consisting of a self centring and dissipative behaviour (commonly referred to as a hybrid system). In this thesis, results of experimental investigations performed on benchmark and selectively weakened walls are discussed. The investigations consisted of quasi-static cyclic uni-directional tests on two benchmark and two retrofitted cantilever walls. The first benchmark wall is detailed as typical of pre-1970's construction practice. An equivalent wall is retrofitted using a selective weakening approach involving a horizontal cut at foundation level to allow for a rocking response. The second benchmark wall represents a more severe scenario where the inelastic behaviour is dominated by shear. A retrofit solution involving vertically segmenting the wall to improve the ductility and retain gravity carrying capacity by inducing a flexural response is implemented. Numerical investigations on a multi-storey wall system are performed using non linear time history analysis on SDOF and MDOF lumped plasticity models, representing an as built and retrofitted prototype structure. Calibration of the hysteretic response to experimental results is carried out (accounting for pinching and strength degradation). The sensitivity of maximum and residual drifts to p-delta and strength degradation is monitored, along with the sensitivity of the peak base shear to higher mode affects. The results of the experimental and analytical investigations confirmed the feasibility and viability of the proposed retrofit technique, towards improving the seismic performance of structural walls.

Research papers, University of Canterbury Library

A buckling-restrained braced frame (BRBF) is a structural bracing system that provides lateral strength and stiffness to buildings and bridges. They were first developed in Japan in the 1970s (Watanabe et al. 1973, Kimura et al. 1976) and gained rapid acceptance in the United States after the Northridge earthquake in 1994 (Bruneau et al. 2011). However, it was not until the Canterbury earthquakes of 2010/2011, that the New Zealand construction market saw a significant uptake in the use of buckling-restrained braces (BRBs) in commercial buildings (MacRae et al. 2015). In New Zealand there is not yet any documented guidance or specific instructions in regulatory standards for the design of BRBFs. This makes it difficult for engineers to anticipate all the possible stability and strength issues within a BRBF system and actively mitigate them in each design. To help ensure BRBF designs perform as intended, a peer review with physical testing are needed to gain building compliance in New Zealand. Physical testing should check the manufacturing and design of each BRB (prequalification testing), and the global strength and stability of each BRB its frame (subassemblage testing). However, the financial pressures inherent in commercial projects has led to prequalification testing (BRB only testing) being favoured without adequate design specific subassemblage testing. This means peer reviewers have to rely on BRB suppliers for assurances. This low regulation environment allows for a variety of BRBF designs to be constructed without being tested or well understood. The concern is that there may be designs that pose risk and that issues are being overlooked in design and review. To improve the safety and design of BRBFs in New Zealand, this dissertation studies the behaviour of BRBs and how they interact with other frame components. Presented is the experimental test process and results of five commercially available BRB designs (Chapter 2). It discusses the manufacturing process, testing conditions and limitations of observable information. It also emphasises that even though subassemblage testing is impractical, uniaxial testing of the BRB only is not enough, as this does not check global strength or stability. As an alternative to physical testing, this research uses computer simulation to model BRB behaviour. To overcome the traditional challenges of detailed BRB modelling, a strategy to simulate the performance of generic BRB designs was developed (Chapter 3). The development of nonlinear material and contact models are important aspects of this strategy. The Chaboche method is employed using a minimum of six backstress curves to characterize the combined isotropic and kinematic hardening exhibited by the steel core. A simplified approach, adequate for modelling the contact interaction between the restrainer and the core was found. Models also capture important frictional dissipation as well as lateral motion and bending associated with high order constrained buckling of the core. The experimental data from Chapter 2 was used to validate this strategy. As BRBs resist high compressive loading, global stability of the BRB and gusseted connection zone need to be considered. A separate study was conducted that investigated the yielding and buckling strength of gusset plates (Chapter 4). The stress distribution through a gusset plate is complex and difficult to predict because the cross-sectional area of gusset plate is not uniform, and each gusset plate design is unique in shape and size. This has motivated design methods that approximate yielding of gusset plates. Finite element modelling was used to study the development of yielding, buckling and plastic collapse behaviour of a brace end bolted to a series of corner gusset plates. In total 184 variations of gusset plate geometries were modelled in Abaqus®. The FEA modelling applied monotonic uniaxial load with an imperfection. Upon comparing results to current gusset plate design methods, it was found that the Whitmore width method for calculating the yield load of a gusset is generally un-conservative. To improve accuracy and safety in the design of gusset plates, modifications to current design methods for calculating the yield area and compressive strength for gusset plates is proposed. Bolted connections are a popular and common connection type used in BRBF design. Global out-of-plane stability tends to govern the design for this connection type with numerous studies highlighting the risk of instability initiated by inelasticity in the gussets, neck of the BRB end and/or restrainer ends. Subassemblage testing is the traditional method for evaluating global stability. However, physical testing of every BRBF variation is cost prohibitive. As such, Japan has developed an analytical approach to evaluate out-of-plane stability of BRBFs and incorporated this in their design codes. This analytical approach evaluates the different BRB components under possible collapse mechanisms by focusing on moment transfer between the restrainer and end of the BRB. The approach have led to strict criteria for BRBF design in Japan. Structural building design codes in New Zealand, Europe and the United States do not yet provide analytical methods to assess BRB and connection stability, with prototype/subassemblage testing still required as the primary means of accreditation. Therefore it is of interest to investigate the capability of this method to evaluate stability of BRBs designs and gusset plate designs used in New Zealand (including unstiffened gusset connection zones). Chapter 5 demonstrates the capability of FEA to study to the performance of a subassemblage test under cyclic loading – resembling that of a diagonal ground storey BRBF with bolted connections. A series of detailed models were developed using the strategy presented in Chapter 3. The geometric features of BRB 6.5a (Chapter 2) were used as a basis for the BRBs modelled. To capture the different failure mechanisms identified in Takeuchi et al. (2017), models varied the length that the cruciform (non-yielding) section inserts into the restrainer. Results indicate that gusset plates designed according to New Zealand’s Steel Structures Standard (NZS 3404) limit BRBF performance. Increasing the thickness of the gusset plates according to modifications discussed in Chapter 4, improved the overall performance for all variants (except when Lin/ Bcruc = 0.5). The effect of bi-directional loading was not found to notably affect out-of-plane stability. Results were compared against predictions made by the analytical method used in Japan (Takeuchi method). This method was found to be generally conservative is predicting out-of-plane stability of each BRBF model. Recommendations to improve the accuracy of Takeuchi’s method are also provided. The outcomes from this thesis should be helpful for BRB manufacturers, researchers, and in the development of further design guidance of BRBFs.

Research papers, University of Canterbury Library

Seismically vulnerable buildings constitute a major problem for the safety of human beings. In many parts of the world, reinforced concrete (RC) frame buildings designed and constructed with substandard detailing, no consideration of capacity design principles, and improper or no inclusion of the seismic actions, have been identified. Amongst those vulnerable building, one particular typology representative of the construction practice of the years previous to the 1970’s, that most likely represents the worst case scenario, has been widely investigated in the past. The deficiencies of that building typology are related to non-ductile detailing in beam column joints such as the use of plain round bars, the lack of stirrups inside the joint around the longitudinal reinforcement of the column, the use of 180° end hooks in the beams, the use of lap splices in potential ‘plastic hinge’ regions, and substandard quality of the materials. That type of detailing and the lack of a capacity design philosophy create a very fragile fuse in the structure where brittle inelastic behaviour is expected to occur, which is the panel zone region of exterior beam column joints. The non-ductile typology described above was extensively investigated at the University of Canterbury in the context of the project ‘Retrofit Solutions for New Zealand Multi-Storey Buildings’ (2004-2011), founded by the ‘Foundation for Research, Science and Technology’ Tūāpapa Rangahau Pūtaiao. The experimental campaign prior to the research carried out by the author consisted of quasi-static tests of beam column joint subassemblies subjected to lateral loading regime, with constant and varying axial load in the column. Most of those specimens were representative of a plane 2D frame (knee joint), while others represented a portion of a space 3D frame (corner joints), and only few of them had a floor slab, transverse beams, and lap splices. Using those experiments, several feasible, cost-effective, and non-invasive retrofit techniques were developed, improved, and refined. Nevertheless, the slow motion nature of those experiments did not take into account the dynamical component inherent to earthquake related problems. Amongst the set of techniques investigated, the use of FRP layers for strengthening beam column joints is of particular interest due to its versatility and the momentum that its use has gained in the current state of the practice. That particular retrofit technique was previously used to develop a strengthening scheme suitable for plane 2D and space 3D corner beam column joints, but lacking of floor slabs. In addition, a similar scheme was not developed for exterior joints of internal frames, referred here as ‘cruciform’. In this research a 2/5 scale RC frame model building comprising of two frames in parallel (external and internal) joined together by means of floor slabs and transverse beams, with non-ductile characteristics identical to those of the specimens investigated previously by others, and also including lap splices, was developed. In order to investigate the dynamic response of that building, a series of shake table tests with different ground motions were performed. After the first series of tests, the specimen was modified by connecting the spliced reinforcement in the columns in order to capture a different failure mode. Ground motions recorded during seismic events that occurred during the initial period of the experimental campaign (2010) were used in the subsequent experiments. The hierarchy of strengths and sequence of events in the panel zone region were evaluated in an extended version of the bending moment-axial load (M-N) performance domain developed by others. That extension was required due to the asymmetry in the beam cross section introduced by the floor slab. In addition, the effect of the torsion resistance provided by the spandrel (transverse beam) was included. In order to upgrade the brittle and unstable performance of the as-built/repaired specimen, a practical and suitable ad-hoc FRP retrofit intervention was developed, following a partial retrofit strategy that aimed to strengthen exterior beam column joints only (corner and cruciform). The ability of the new FRP scheme to revert the sequence of events in the panel zone region was evaluated using the extended version of the M-N performance domain as well as the guidelines for strengthening plane joints developed by others. Weakening of the floor slab in a novel configuration was also incorporated with the purpose of reducing the flexural capacity of the beam under negative bending moment (slab in tension), enabling the damage relocation from the joint into the beam. The efficacy of the developed retrofit intervention in upgrading the seismic performance of the as-built specimen was investigated using shake table tests with the input motions used in the experiments of the as-built/repaired specimen. Numerical work aimed to predict the response of the model building during the most relevant shake table tests was carried out. By using a simple numerical model with concentrated plasticity elements constructed in Ruaumoko2D, the results of blind and post-experimental predictions of the response of the specimen were addressed. Differences in the predicted response of the building using the nominal and the actual recorded motions of the shake table were investigated. The dependence of the accuracy of the numerical predictions on the assumed values of the parameters that control the hysteresis rules of key structural members was reviewed. During the execution of the experimental campaign part of this thesis, two major earthquakes affected the central part of Chile (27 of February 2010 Maule earthquake) and the Canterbury region in New Zealand (22 February 2011 Canterbury earthquake), respectively. As the author had the opportunity to experience those events and investigate their consequences in structures, the observations related to non-ductile detailing and drawbacks in the state of the practice related to reinforced concrete walls was also addressed in this research, resulting in preliminary recommendations for the refinement of current seismic code provisions and assessment guidelines. The investigations of the ground motions recorded during those and other earthquakes were used to review the procedures related to the input motions used for nonlinear dynamic analysis of buildings as required by most of the current code provisions. Inelastic displacement spectra were constructed using ground motions recorded during the earthquakes mentioned above, in order to investigate the adequacy of modification factors used to obtain reduced design spectra from elastic counterparts. Finally a simplified assessment procedure for RC walls that incorporates capacity compatible spectral demands is proposed.